
Automatic Binary Optimizer for z/OS
2.1

User's Guide

IBM

SC27-9587-00

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 101.

First edition (March 2021)

This edition applies to Version 2.1 of IBM® Automatic Binary Optimizer for z/OS® (program number 5697-AB2), and IBM
Automatic Binary Optimizer for z/OS Trial (program number 5697-TR2), and to all subsequent releases and modifications
until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

You can view or download softcopy publications free of charge at www.ibm.com/shop/publications/order/.
© Copyright International Business Machines Corporation 2015, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Tables... v

Preface..vii
About this book...vii

Abbreviated terms...vii
How to read syntax diagrams... vii

Summary of changes... viii
How to send your comments.. ix
Accessibility features for Automatic Binary Optimizer for z/OS.. ix

Chapter 1. Overview.. 1
Benefits.. 1
Using ABO and Enterprise COBOL together.. 2

Chapter 2. System requirements.. 3
Supported operating systems..3
Target hardware levels...4

Chapter 3. COBOL module requirements.. 7
Supported program modules...7
Eligible compilers...8
COBOL language feature and compiler option support.. 8
Handling ineligible CSECTs.. 9

Chapter 4. Installing and verifying installation... 11
Installing IBM Automatic Binary Optimizer for z/OS.. 11
Verifying installation using the Installation Verification Program (IVP)...11

Chapter 5. Optimizing modules ... 15
Required DD statements..15
Optimizer directives...16

BOPT... 16
IEFOPZ..18

Optimizer options...19
ALLOW...20
ARCH...21
CSECT... 21
LIST...24
LOG... 24
REPLACE... 25
RTIBIND and the IBM Run Time Instrumentation Profiler... 26
SCAN... 29

Comments..29
Line continuation... 30
JCL examples... 31

Specifying optimization with BOPT..31
Specifying optimization with IEFOPZ...34

Recommended settings for the z/OS JCL REGION and JCL MEMLIMIT parameters.............................. 35
Specifying the language to be used for ABO messages..36

 iii

Invoking ABO from TSO, REXX and assembler code.. 36
Optimizing under TSO.. 36
Starting the optimizer from an assembler program.. 41

Chapter 6. Understanding output from the optimization process........................... 43
Log files.. 43
Listing transform.. 45

Listing transform contents... 45
SYSPRINT DD and LIST option...52

Chapter 7. Using the ABO Assistant..55
Components of the ABO Assistant.. 55
How to use the ABO Assistant...57

How to use the SMF Analyzer.. 57
How to use the Program Analyzer and Optimizer..57

Example reports...58
Example report from the SMF Analyzer...58
Example report from the Program Analyzer and Optimizer.. 59

BOZPAJ parameter error messages.. 60
Limitations and requirements on Program Analyzer and Optimizer.. 60
SMF DUMP generation... 62

Chapter 8. Managing optimization and optimized module deployment process...... 65
Optimization and deployment usage scenarios ...66

Scenario 1: Optimization process with static deployment..66
Scenario 2: Optimization process with dynamic deployment...66
Scenario 3: Optimization process using a hybrid approach..68

Testing information.. 69

Chapter 9. Resolving problems with optimization and optimized module
deployment .. 71
Resolving problems that occur during optimization time...71
Resolving problems encountered during execution... 71
Changes in COBOL module size after optimization...72
Error message and abend code differences..72
Application Delivery Foundation for z/OS... 73

Appendix A. JCL sample.. 75

Appendix B. Return codes..77

Appendix C. Messages... 79

Appendix D. Run Time Instrumentation report..95

Appendix E. Manual RTI rebinding instructions...99

Notices..101
Trademarks.. 101

List of resources.. 103
IBM Automatic Binary Optimizer for z/OS publications... 103
Related publications..103

iv

Tables

1. Comparing optimizer and compiler use cases..2

2. Supported hardware levels... 4

3. COBOL modules that ABO does not support.. 7

4. Ineligible CSECTs and message issued.. 10

5. Return code and corresponding missing LE PTFs.. 13

6. The ddnames used for binary optimization..15

7. Optimizer options.. 20

8. Recommended allocation parameters... 27

9. Input modules and their containing CSECTs.. 53

10. Output 1: Optimized modules and their CSECTs..53

11. Output 2: Listing transforms...53

12. Recommended allocation parameters... 75

13. IBM Automatic Binary Optimizer for z/OS return codes.. 77

 v

vi

Preface

About this book
This book is for IBM COBOL compiler customers who use IBM Automatic Binary Optimizer for z/OS to
improve the performance of their already compiled COBOL programs.

Abbreviated terms
Certain terms are used in a shortened form in this information. Abbreviations for the terms used most
frequently are listed alphabetically in the following table.

Term used Long form

ABO IBM Automatic Binary Optimizer for z/OS

CSECT Control section

EBCDIC Extended binary coded decimal interchange code

HFS Hierarchical file system

JCL Job control language

PDS Partitioned data set

PDSE Partitioned data set extended

Other terms, if not commonly understood, are spelled out the first time they appear.

How to read syntax diagrams
Use the following description to read the syntax diagrams in this information:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>--- symbol indicates the beginning of a syntax diagram.

The ---> symbol indicates that the syntax diagram is continued on the next line.

The >--- symbol indicates that the syntax diagram is continued from the previous line.

The --->< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >--- symbol and end with
the ---> symbol.

• Required items appear on the horizontal line (the main path).

required_item

• Optional items appear below the main path.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

© Copyright IBM Corp. 2015, 2021 vii

required_item required_choice1

required_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below:

required_item

default_choice

required_choice1

required_choice2

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

• Keywords appear in uppercase (for example, FROM). They must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent user-supplied names or
values.

• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

Summary of changes
This section lists the major changes that have been made to this document for IBM Automatic Binary
Optimizer for z/OS Version 2 Release 1. The latest technical changes are highlighted in the HTML version,
or marked by vertical bars (|) in the left margin in the PDF version.

Version 2 Release 1 document refresh in March 2021
• PTF updates (UI74718, UI74719)

– Introduces a new component, the SMF Analyzer, to the ABO Assistant tool. (See Chapter 7, “Using
the ABO Assistant,” on page 55)

– Adds support for the new z15 T02 machine. (See “Target hardware levels” on page 4)
• Other updates

– Updates the Overview section to include information about additional features of ABO and the tools
that come with ABO. (See Chapter 1, “Overview,” on page 1)

Version 2 Release 1 document refresh in October 2020
• PTF updates (UI72097, UI72098)

– Introduces a new tool, the ABO Assistant to automate all the individual steps required to efficiently
optimize your COBOL application using ABO and to clearly report on the CPU time savings from using
ABO. (See Chapter 7, “Using the ABO Assistant,” on page 55)

– Introduces new syntax for the CSECT and member separator and negation. (See “CSECT” on page
21 and “BOPT” on page 16)

viii Preface

– Improves the ABO IVP by detecting if MACHMIG VEF is set. (See “Verifying installation using the
Installation Verification Program (IVP)” on page 11)

Version 2 Release 1 document refresh in March 2020
• PTF updates (UI68702, UI68703)

– Improves the listing transform by displaying prolog information for each CSECT in the "Input
Instructions" section. (See “Listing transform contents” on page 45)

– Improves the Run Time Instrumentation report by:

- Showing a "Summary report by language" subsection in the "Summary report" section.
- Introducing the time stamps in the "RTI option" section and the "Summary report" section. These

time stamps correspond with the profiling start and end times respectively.

(See Appendix D, “Run Time Instrumentation report,” on page 95)

Version 2 Release 1 document refresh in November 2019
• PTF updates (UI66467, UI66468)

– Adds a new optimizer option, RTIBIND, to generate RTI Profiler enabled modules. (See RTIBIND)
– Adds the following messages: BOZ1426S, BOZ1495W, and BOZ1496W. (See Messages)

• Other updates

– Adds appendixes for the Run Time Instrumentation report, and the manual RTI rebinding
instructions. (See Run Time Instrumentation report and Manual RTI rebinding instructions)

Version 2 Release 1
• Adds z/OS Version 2.4 to the list of supported operating systems, and removes z/OS Version 2.1. (See

Supported operating systems)
• Adds ARCH(13) for generating code that exploits the new IBM z15. (See ARCH)
• Adds the following message: BOZ4124I. (See Messages)
• Removes the following optimizer option: HANDLERS.

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this documentation, send your comments to the following address:
compinfo@cn.ibm.com.

Be sure to include the name of the document, the publication number, the version of the product, and, if
applicable, the specific location (for example, the page number or section heading) of the text that you are
commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way that IBM believes appropriate without incurring any obligation to you.

Accessibility features for Automatic Binary Optimizer for z/OS
Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Automatic Binary Optimizer for z/OS (ABO).

Accessibility features

z/OS includes the following major accessibility features:

How to send your comments

Preface ix

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (http://www.access-board.gov/guidelines-and-standards/communications-
and-it/about-the-section-508-standards/section-508-standards) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

The ABO online product documentation in IBM Knowledge Center is enabled for accessibility. The
accessibility features of IBM Knowledge Center are described at http://www.ibm.com/support/
knowledgecenter/en/about/releasenotes.html.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS Enterprise Edition.

For information about accessing these interfaces, see the following publications:

• z/OS TSO/E Primer (http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/
com.ibm.zos.v2r2.ikjp100/toc.htm)

• z/OS TSO/E User's Guide (http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/
com.ibm.zos.v2r2.ikjc200/toc.htm)

• z/OS ISPF User's Guide Volume I (http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/
com.ibm.zos.v2r2.f54ug00/toc.htm)

• IBM Developer for z/OS Knowledge Center (http://www.ibm.com/support/knowledgecenter/SSQ2R2/
rdz_welcome.html?lang=en)

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The ABO online product documentation is available in IBM Knowledge Center (https://www.ibm.com/
support/knowledgecenter/SSERQD), which is viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/OS
interfaces.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

How to send your comments

x Preface

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
https://www.ibm.com/support/knowledgecenter/SSERQD
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjp100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjp100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjp100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjc200/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjc200/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjc200/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.f54ug00/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.f54ug00/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.f54ug00/toc.htm
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/en/SSERQD
https://www.ibm.com/support/knowledgecenter/SSERQD
https://www.ibm.com/support/knowledgecenter/SSERQD

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

How to send your comments

Preface xi

http://www.ibm.com/able
http://www.ibm.com/able

How to send your comments

xii Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 1. Overview

IBM Automatic Binary Optimizer for z/OS (ABO) improves the performance of already compiled IBM
COBOL programs. ABO does not require source code, source code migration, or performance options
tuning. It uses modern optimization technology to target the latest IBM Z® Systems, including IBM z15™,
to accelerate the performance of COBOL applications.

The main function of ABO is to optimize COBOL program modules to improve performance. ABO optimizes
directly from the binary code inside the program modules, and this allows ABO to ensure the program
logic remains exactly the same. In addition to optimization ABO has some other useful features:

• Use the ABO RTIBIND=Y to enable your COBOL program modules for performance profiling by the Run
Time Instrumentation (RTI) Profiler included with ABO. Both the original and optimized program
modules can be enabled for profiling. A detailed performance report is produced to help you identify
performance bottlenecks.

• Use the ABO SCAN=Y option to obtain insight into your COBOL application inventory. Using this feature
provides details on the makeup of your COBOL modules, including compiler versions, compilation dates
and more.

ABO comes with the tools that complement ABO to improve the process of realizing performance gains of
your COBOL applications.

• The ABO Assistant simplifies the ABO evaluation process, accelerates the deployment of ABO optimized
modules, and allows you to easily see the performance improvements from using ABO. The ABO
Assistant is a suite of tools to automate the identification and optimization of your top CPU consuming
COBOL batch applications. The ABO Assistant enables you to drill down from high level SMF data all the
way to obtain concrete performance evaluation results, and to help prepare your key optimized modules
for deployment.

• The Run Time Instrumentation (RTI) Profiler allows you to profile COBOL applications to determine
performance bottlenecks. It collects and reports on the execution time CPU performance
characteristics of your batch z/OS applications.

• The SMF Analyzer simplifies the process of identifying the best applications to optimize with ABO. It
analyzes your SMF data to filter, find, sort, and report on your top CPU consuming applications.

Benefits
Using IBM Automatic Binary Optimizer for z/OS (ABO) to optimize your COBOL applications lowers your
IBM Z System operating costs. The ABO-optimized modules behave the same as the original modules but
consume fewer CPU resources and have shorter processing time.

Using ABO offers the quickest time to value. ABO 2.1 delivers the same performance benefit as the latest
Enterprise COBOL V6 compiler. ABO directly optimizes already-compiled modules and testing cost is
significantly reduced. Using the ABO Assistant, an evaluation is simplified, and deployment is accelerated.

Using ABO allows you to maximize the return on investment (ROI) of your new IBM Z Systems. IBM Z
delivers performance with hardware features and advanced optimization technology. COBOL applications
compiled by earlier COBOL compilers don’t utilize new hardware instructions available on the latest IBM Z
Systems. Optimizing these earlier COBOL applications with ABO provides delivers up to a 25-year jump
forward in the evolution of hardware technology, with access to over 600 new hardware instructions that
are already on the IBM z15, z14, z13s®, z13®, zEC12 and zBC12 systems. It is important to stay current
with the latest Enterprise COBOL and ABO.

ABO and Enterprise COBOL are designed to work together. Use Enterprise COBOL to compile programs
that are under active development; and ABO to optimize programs that are not frequently compiled.

© Copyright IBM Corp. 2015, 2021 1

Using ABO and Enterprise COBOL together
IBM Automatic Binary Optimizer for z/OS and the latest IBM Enterprise COBOL compiler serve different
but complementary purposes.

• ABO optimizes COBOL program modules complied by earlier versions of the compiler and Enterprise
COBOL compiles and optimizes COBOL source code.

• There is no performance trade-off when using ABO. In our performance testing, ABO 2.1 and Enterprise
COBOL 6.3 deliver comparable performance.

• ABO offers a faster path to performance gains. Migrating to COBOL V6 can require multiple rounds of
compile and test. Source code changes will be required if problems like invalid date are detected in
existing applications.

• Use the latest Enterprise COBOL to compile new COBOL programs or to recompile COBOL programs
requiring changes. Use ABO to optimize your COBOL programs that are not in your recompilation plan or
if the program source code is not available.

You can choose which product to use according to Table 1 on page 2.

Table 1. Comparing optimizer and compiler use cases

Use case
IBM Automatic Binary

Optimizer for z/OS
IBM Enterprise COBOL

compilers

Significant performance
improvements without requiring
source, migration, or options
tuning

√

Built-in support on z/OS V2.2 and
later for targeting multiple
hardware levels

√

Interoperability and legacy
compatibility (e.g. PDS input/
output, interoperate with OS/VS
COBOL and VS COBOL II NORES)

√

No need to downgrade ARCH
setting to match disaster
recovery machine

√

New COBOL application
development or to use new
COBOL features

√

Maintenance on existing COBOL
programs

√

2 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 2. System requirements

Supported operating systems
IBM Automatic Binary Optimizer for z/OS can be run on the following operating systems:

• z/OS Version 2.4
• z/OS Version 2.3
• z/OS Version 2.2

For the operating system levels before z/OS 2.4, ABO requires some PTFs to be applied on the systems
where Automatic Binary Optimizer for z/OS is installed and running. Other PTFs are required on systems
where the ABO generated optimized modules will be running, even if ABO is not installed on these
systems. APAR/PTF (OA47689/UA90982), which is available for z/OS 2.2 only, is required on systems
where either ABO or the ABO generated modules are running.

These PTFs are required on systems where ABO is running:

• z/OS V2.3

– OA55985/UA97356 (Binder)

• z/OS V2.2

– OA47829/UA78084 (Binder)
– OA50460/UA82866 (Binder)
– OA47689/UA90982 (IEFOPZxx SYS1.PARMLIB support)
– OA55985/UA97372 (Binder)

These PTFs are required on systems where ABO optimized modules are running:

• z/OS V2.4

– PH15921/UI65058 (Language Environment)1

– PH15921/UI65059 (Language Environment - Japanese)1

– PH14705/UI64418 (Language Environment Automatic Binary Optimizer Runtime Engine)1

• z/OS V2.3

– PI84561/UI49013 (Language Environment Automatic Binary Optimizer Runtime Engine)1

– PH14705/UI64417 (Language Environment Automatic Binary Optimizer Runtime Engine)
• z/OS V2.2

– PI51546/UI33445 (Language Environment)
– PI51802/UI32944 (Language Environment CICS® system definition sample update)
– OA47689/UA90982 (IEFOPZxx SYS1.PARMLIB support)
– PH14705/UI64419 (Language Environment Automatic Binary Optimizer Runtime Engine)

If the same system is going to be used to both run ABO and run the ABO optimized modules then all the
PTFs listed above per z/OS version must be installed on this system.

Optional programs that can be used with ABO:

• Application Delivery Foundation for z/OS V3.2

– Developer for z/OS Enterprise Edition V14.2
– Debug for z/OS V14.2
– Fault Analyzer for z/OS V14.1.8

© Copyright IBM Corp. 2015, 2021 3

– Application Performance Analyzer for z/OS V14.2

It is highly recommended that the latest IBM Automatic Binary Optimizer or IBM Automatic Binary
Optimizer Trial PTFs be installed. See the fix list and new features page.

Note:

1. The PTF is included in the GA or GA PTF versions of z/OS 2.3 and z/OS 2.4 so is only required if running
early release versions of these z/OS levels.

Target hardware levels
IBM Automatic Binary Optimizer for z/OS can generate program modules for the latest IBM Z servers.

Automatic Binary Optimizer for z/OS uses the same hardware numbering scheme as the COBOL
compilers. Table 2 on page 4 lists the hardware levels that are supported by IBM Automatic Binary
Optimizer for z/OS Version 2.1. You can use the ARCH option to specify which hardware level you want the
ABO produced modules to target.

Table 2. Supported hardware levels

Hardware level Description

10 Generates code that uses instructions available on the 2827-xxxx (IBM
zEnterprise® EC12) and 2828-xxxx (IBM zEnterprise BC12) models in z/
Architecture® mode.

Specifically, these level 10 machines and their follow-ons add instructions
with support of the following facilities:

• Execution-hint facility
• Load-and-trap facility
• Miscellaneous-instructions-extension facility
• Transactional-execution facility
• Enhanced decimal floating point facility that enables more efficient

conversions between zoned decimal data items and decimal floating point
data items. Instead of converting zoned decimal data items to packed-
decimal data items to perform arithmetic operations, the compiler
converts zoned decimal data items directly to decimal floating point data
items, and then back again to zoned decimal data items after the
computations are complete.

11 Generates code that uses instructions available on the 2964-xxxx (IBM
z13®) and 2965-xxx (IBM z13s) models in z/Architecture mode.

Specifically, these level 11 machines and their follow-ons add instructions
with support of the following facilities:

• Enhanced decimal floating point facility that enables more efficient
conversions between packed-decimal data items and decimal floating
point intermediate result data items

• Vector extension facility for more efficient string processing from the
COBOL statements or functions such as INSPECT and REVERSE

12 Generates code that uses instructions available on 3906-xxx (IBM z14) and
3907-xxx (IBM z14 ZR1) models in z/Architecture mode.

Specifically, these level 12 machines and their follow-ons add instructions
that support the vector packed-decimal facility, which accelerates packed-
decimal computation by storing intermediate results in vector registers
instead of in memory.

4 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

http://www-01.ibm.com/support/docview.wss?uid=swg27047229

Table 2. Supported hardware levels (continued)

Hardware level Description

13 Generates code that uses instructions available on 8561-xxx (IBM z15) and
8562-xxx (IBM z15 T02) models in z/Architecture mode.

Specifically, these level 13 machines and their follow-ons add instructions
supported by the following facilities:

• Vector Packed-Decimal Enhancement Facility
• Vector-Enhancements Facility 2
• Miscellaneous Instruction-Extensions-Facility 3
• Aligned Vector Load/Store Hints

Notes:

1. ABO can run on any system supported by the z/OS level. For a complete list of IBM Z servers that
support z/OS V2.2 and later, see z/OS Server Support.

2. When using ARCH=11 and higher, the SYS1.IPLPARM or SYS1.PARMLIB member LOADxx must not
include MACHMIG VEF. This will disable the vector extension facility and cause an 0C7 data
exception abend when executing vector instructions produced by ABO at ARCH=11 and higher.

Chapter 2. System requirements 5

http://www-03.ibm.com/systems/z/os/zos/support/zos_server_support.html

6 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 3. COBOL module requirements

The input to the IBM Automatic Binary Optimizer for z/OS is your COBOL program modules. ABO verifies
that the program modules provided are supported by ABO. ABO then scans the CSECTs within the
program modules for those that are eligible for optimization. A CSECT is eligible for optimization by ABO if
all of the following conditions apply:

• It was generated by an eligible IBM COBOL compiler.
• All the COBOL language features and options are supported.
• The optimization verification passes all succeed.

ABO optimizes all the eligible CSECTs in the program modules and produces new program modules
containing the CSECTs that are successfully optimized.

Supported program modules
IBM Automatic Binary Optimizer for z/OS optimizes program modules output from the binder and load
modules output from the linkage editor. The program modules output from the binder can be either
program objects or load modules. Load modules produced by the linkage editor must be acceptable input
to the binder for ABO to optimize them.

ABO is able to optimize both fully bound or partially bound program modules. A partially bound module is
one that has been bound with CALL=NO or NCAL option and are often contained in a link library. If the
ALLOW=NOUNRESEXE option has been specified, ABO will not optimize partially bound program
modules. See the ALLOW option for more details.

ABO does not support the following COBOL modules:

Table 3. COBOL modules that ABO does not support

COBOL modules that ABO does not support Messages issued

Modules that the binder will not process BOZ4116I followed by BOZ1429U

For example, the binder will not process load modules
that have ESD names with invalid characters. When ABO
encounters a module with an invalid ESD name, ABO
will produce a BOZ4116I message and the BOZ4116I
message includes the text of binder message
IEW2512E. The text of IEW2512E includes the name of
the invalid ESD name.

Modules bound with EDIT=NO BOZ1423S

Signed modules BOZ1424S

Modules marked not executable BOZ1422S

© Copyright IBM Corp. 2015, 2021 7

Table 3. COBOL modules that ABO does not support (continued)

COBOL modules that ABO does not support Messages issued

Modules that include object files from a
prelink step but the prelink step was not done
properly

BOZ4116I followed by BOZ1419S

For example, prelinking may be improper if it was not
performed on all object files. This improper prelink
could result in load modules that the binder and ABO
will not process. ABO would produce a BOZ4116I
message followed by a BOZ1419S message if the binder
would not process the module. Prelinking is also not
proper if the module includes output from multiple
prelink steps. In this case, the original module would
normally not run properly and ABO would produce a
module that would also not run properly.

ABO scans the CSECTs within the program modules for those that are eligible for optimization. A CSECT is
eligible for optimization by ABO if it was generated by an eligible COBOL compiler and all COBOL features
used in the original COBOL program are supported by ABO.

Eligible compilers
IBM Automatic Binary Optimizer for z/OS, V2.1, can optimize CSECTs within program modules that were
generated by the following COBOL compilers:

• Enterprise COBOL for z/OS V4
• Enterprise COBOL for z/OS V3
• COBOL for OS/390® & VM V2
• COBOL for MVS™ & VM V1.2
• COBOL/370 V1.1
• VS COBOL II V1.4.0 (LE enabled modules only)
• VS COBOL II V1.3.x (LE enabled modules only)

Note: COBOL modules that have been processed by CA-Optimizer cannot be optimized by ABO. For these
types of modules it is recommended to use ABO to optimize the original module created by the COBOL
compiler before it was processed by CA-Optimizer.

COBOL language feature and compiler option support

Supported COBOL language features and compiler options
The vast majority of COBOL language features are supported using IBM Automatic Binary Optimizer for
z/OS.

Here is a list of key COBOL features that are supported in IBM Automatic Binary Optimizer for z/OS
Version 2.1.

• ARITH(EXTEND | COMPAT)
• CICS
• CICS HANDLE ABEND
• CICS HANDLE AID
• CICS language translator generated SERVICE LABEL statements
• CMPR2
• DB2®

8 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

• DLL
• ENTRY
• IMS
• I/O and debugging declaratives
• NOOPTIMIZE, OPTIMIZE(STD | FULL)
• NUMPROC(NOPFD | PFD | MIG)
• Program segmentation1

• RECURSIVE
• RENT and NORENT
• SORT and MERGE
• SQL
• SSRANGE
• TEST2

• THREAD
• TRUNC(STD | BIN | OPT)
• User written SERVICE LABEL statements
• XML

Unsupported COBOL language features and compiler options
IBM Automatic Binary Optimizer for z/OS Version 2.1 does not optimize program modules that use the
following COBOL features:

• ACCEPT FROM SYSIPT used in the LABEL declarative
• CLASS
• DISPLAY UPON SYSLST used in the LABEL declarative
• DISPLAY UPON SYSPCH used in the LABEL declarative
• ENTER
• INVOKE
• Java-based object oriented (OO) syntax
• RERUN

Handling ineligible CSECTs
Although IBM Automatic Binary Optimizer for z/OS (ABO) only optimizes CSECTs generated by the
compilers listed in the Eligible compilers section, ABO will tolerate modules containing CSECTs from other
COBOL compilers and languages.

ABO examines each CSECT before optimization begins. If any of the conditions in the following table
applies, the CSECT is not eligible for optimization, a message is issued and the CSECT is skipped. If at
least one eligible CSECT for optimization is found in a module, any ineligible CSECTs are copied over
unchanged to the target module along with the optimized CSECTs.

1 Most cases of Program Segmentation are supported. The remaining unsupported case is when the source
for the CSECT processed by ABO contains independent segments, altered GO TO statements and GO TO
DEPENDING ON statements. In this case, the message BOZ1455W: unsupported feature "Program
Complexity 176" found is issued and the CSECT is skipped.

2 Although programs compiled with TEST and any sub-option can be optimized by ABO, LE will not produce a
formatted variable dump for the ABO generated module. LE will produce this message instead <prog>
was not compiled with the SYM suboption of the TEST. A formatted variable dump
cannot be produced.

Chapter 3. COBOL module requirements 9

Table 4. Ineligible CSECTs and message issued

Ineligible CSECT Message issued

The CSECT name does not match the CSECT filter expression specified. See
CSECT.

BOZ4113I

The CSECT is generated from a language other than COBOL. For example, it
is from HLASM, C/C++, or PL/I.

No specific message
issued 3

The CSECT is not compiled by one of the eligible COBOL compilers. BOZ1455W

The CSECT is compiled by one of the eligible COBOL compilers, but it
contains one or more unsupported COBOL statements listed in Summary of
unsupported COBOL features.

BOZ1455W

The CSECT is too complex for ABO to safely optimize and generate correct
functioning code.

BOZ1455W

The CSECT contains any unexpected data or code. This can include, but is
not limited to, any missing, corrupted or other erroneous strings ABO relies
on to properly understand the CSECT contents and perform correct
optimizations.

BOZ1455W

The CSECT has previously been optimized by ABO. BOZ1455W

3 The optimizer option SCAN=Y can be used to determine the types of CSECTs present in a module.

10 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 4. Installing and verifying installation

Installing IBM Automatic Binary Optimizer for z/OS
All information about installing IBM Automatic Binary Optimizer for z/OS is included in the Program
Directory provided with the product.

It is highly recommended that the latest IBM Automatic Binary Optimizer for z/OS PTFs also be installed.
See the fix list and new features page for a list of IBM Automatic Binary Optimizer for z/OS PTFs and
APARs.

Related reference
“IBM Automatic Binary Optimizer for z/OS publications” on page 103

Verifying installation using the Installation Verification Program
(IVP)

After you complete the SMP/E installation of ABO, use the ABO Installation Verification Program (IVP),
BOZJIVP, to verify that ABO is installed correctly and is functional.

Overview of BOZJIVP
The ABO Installation Verification Program (IVP), BOZJIVP, is located in the ABO sample library
HLQ.SBOZJCL, where HLQ is the prefix used for the target libraries in your ABO SMP/E installation.

Run the IVP on any system on which you plan to use ABO and on any system where the optimized
modules produced by ABO will be running.

Note: ABO can run on any hardware level supported by the minimum z/OS level but the ABO generated
optimized modules can only run on zEC12, zBC12, z13, z13s, z14, z14 ZR1, z15, and z15 T02 systems.
See “Target hardware levels” on page 4 for more information. Keep these minimum hardware
requirements in mind when you examine the IVP results.

Using BOZJIVP
To proceed with the IVP process on the selected system, edit BOZJIVP according to the included JCL
description, and then submit it.

This job contains the following steps:

1. LKED - Link-edits the original COBOL program using as input the object BOZOBJ1 in the same sample
library.

Note: The BOZOBJ1 program was compiled using Enterprise COBOL for z/OS V4R2 with the OPT(STD)
option in effect. The program source example, BOZSRC1, is also available in the same library for your
convenience.

2. GOBEFORE - Runs the original program.
3. VERIFY1 - Verifies z/OS version eligibility to run ABO.
4. OPTIMIZE - Optimizes the original program using ABO.
5. VERIFY2 - Verifies IBM z server type eligibility to run ABO optimized modules.
6. GOAFTER - Runs optimized version of the original COBOL program.
7. EXCEPT - Notifies about possible MACHMIG VEF specification in SYS1.IPLPARM(LOADxx). Runs if step

GOAFTER condition code is S0C7 only.

© Copyright IBM Corp. 2015, 2021 11

http://www-01.ibm.com/support/docview.wss?uid=swg27047229

Note: The LOADxx member may be located on some systems in SYS1.PARMLIB instead of
SYS1.IPLPARM

8. POSTABND - Notifies about possible machine architecture level or LE PTF level conflict. Runs if step
GOAFTER condition code is S0C1, S0C4 or S0C6 only.

9. REPORT - Reports IVP results.

Results
You will receive a return code of 0 or 4 for each of the preceding steps when the IVP runs successfully.
After the REPORT step completes, a report is available in the SYSTSRPT output file and in the JESMSGLG
JOBLOG.

The following example shows a sample IVP report in the SYSTSRPT output file:

*** The original program start time is: 10:42:22.72

*** The original program end time is: 10:44:10.71

*** ***
*** Optimization successful! ***
*** ***

*** The optimized program start time is: 10:44:11.41

*** The optimized program end time is: 10:44:15.63

*** ***
*** The elapsed time is reduced by 103.77 sec ***
*** ***

*** ***
*** Installation verification successful! ***
*** ***

The following example shows a sample JESMSGLG JOBLOG. Note that the Installation
verification successful! message is present in both the JOBLOG and in the console.

10.42.22 JOB07227 HTRT01I CPU (Total)
Elapsed
10.42.22 JOB07227 HTRT02I Jobname Stepname ProcStep RC I/O hh:mm:ss.th
hh:mm:ss.th
10.42.22 JOB07227 HTRT03I BOZIVP LKED 00 176 00.01
00.10
10.44.10 JOB07227 HTRT03I BOZIVP GOBEFORE 00 192 01:47.49
01:48.14
10.44.11 JOB07227 HTRT03I BOZIVP OPTIMIZE 00 13457 00.06
00.54
10.44.15 JOB07227 HTRT03I BOZIVP GOAFTER 00 205 04.21
04.37
10.44.15 JOB07227 +*** Installation verification successful!

10.44.15 JOB07227 HTRT03I BOZIVP REPORT 00 64 00.01
00.03

If the VERIFY1 step fails, you will see the following message in both the JOBLOG and in the console:

z/OS version: xx.xx is not a supported z/OS version to run ABO.

If the VERIFY2 step fails, you will see the following message in both the JOBLOG and in the console:

IBM z server: type (name)
is not a supported hardware level to run ABO optimized modules.

12 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

For example:

IBM z server: 2817 (zEnterprise 196)
is not a supported hardware level to run ABO optimized modules.

If the OPTIMIZE step fails, verify the messages in this step log file to see which system or Language
Environment component is possibly missing. Fix the problem, and then run the BOZJIVP job again.

If the GOAFTER step fails, verify if step EXCEPT or POSTABND was executed. If the step EXCEPT was
executed, you will see the following message in both the JOBLOG and in the console:

If MACHMIG VEF is specified in SYS1.IPLPARM(LOADxx), then it must be removed for ABO
optimization when ARCH >= 11.

Remove MACHMIG VEF specification from SYS1.IPLPARM(LOADxx), and then run the BOZJIVP job again.

If the step POSTABND was executed, you will see one of the following messages in both the JOBLOG and
in the console:

IVP is incomplete. The ARCH level specified is 13 (z15), but the actual ARCH level is 12 (z14)

Correct ARCH specified and then run the BOZJIVP job again.

If any required LE PTFs is missing, then install it. Otherwise, contact IBM service to report
the problem

Verify which Language Environment PTF is possibly missing. If one or more of the "Language Environment
Automatic Binary Optimizer Runtime Engine" PTFs listed in “Supported operating systems” on page 3 are
not installed, an 0C1 abend is likely to occur. If the "Language Environment Automatic Binary Optimizer
Runtime Engine" PTF is installed but is not the latest PTF listed in the Program Directory, a U4038 abend
will occur and one of the following messages will be displayed:

IGZ0153S Program BOZSRC1 was compiled with a level of the compiler that requires service to be
installed on Language Environment.
IGZ0355S Program BOZSRC1 was optimized with a level of the Automatic Binary Optimizer that
requires service to be installed on Language Environment.

"Language Environment Automatic Binary Optimizer Runtime Engine" PTFs on z/OS 2.2 and 2.3 will cause
the first message to be issued, and PTFs on z/OS 2.4 will cause the second message to be issued.

If instead of an abend the GOAFTER step fails with a non-zero return code, the return code corresponds to
a missing Language Environment PTF as follows:

Table 5. Return code and corresponding missing LE PTFs

Return code z/OS 2.2 z/OS 2.3

17 PI84563 PI84561

Install the required PTFs, and then run the BOZJIVP job again.

An 0C1 abend will also occur if you attempt to run the ABO generated modules on a system that is not
supported by ABO. See “Target hardware levels” on page 4 for the supported systems.

Chapter 4. Installing and verifying installation 13

14 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 5. Optimizing modules
To use the Automatic Binary Optimizer for z/OS, write your JCL for the optimization process.

Invoking ABO with the EXEC statement

Use the EXEC job control statement in your JCL to invoke ABO. The EXEC statement is as follows:

 //OPT EXEC PGM=BOZOPT

Required DD statements

The optimization process requires that you specify data sets for specific uses in the optimization process.
You can define these data sets in DD statements with the required ddnames. The ddnames that are used
by ABO and their characteristics are shown in Table 6 on page 15.

Specifying the optimizer directive BOPT or IEFOPZ

Use BOPT or IEFOPZ to direct ABO. You can include one or more of the BOPT or IEFOPZ directives in the
SYSIN DD. For details, see “BOPT” on page 16 and “IEFOPZ” on page 18.

Required DD statements
The table shows the ddnames that are used by the Automatic Binary Optimizer for z/OS.

Table 6. The ddnames used for binary optimization

ddname Type Required Description

STEPLIB Input Yes Specifies the name of
the data set containing
ABO and the dependent
Language Environment®

runtime data sets.

SYSIN Input Yes Specifies the location of
the file that contains the
optimizer directives
BOPT and IEFOPZ and
optimizer options. As a
convenience, you can
specify the in-stream file
in the JCL using DD *.

OPTLOG Output Yes Specifies that the
optimization summary
information (such as
what is optimized and
the location of the
optimized binaries) is
written to this DD. SCAN
output is also written
here.

SYSPRINT Output No, if the LIST option is
specified

Yes, if the LIST option is
not specified

Specifies the default
location for the listing
transforms. See also
“SYSPRINT DD and LIST
option” on page 52.

© Copyright IBM Corp. 2015, 2021 15

Table 6. The ddnames used for binary optimization (continued)

ddname Type Required Description

OPTERR Output No Specifies that the
optimization diagnostic
information is written to
this DD in exceptional
circumstances.

CEEDUMP Output No Specifies that the
optimization dump
information is written to
this DD in exceptional
circumstances.

CEEOPTS Input No, if you want English
messages.

Yes, if you want
Japanese messages.

Specifies the language
to be used for
messages. See also
“Specifying the language
to be used for ABO
messages” on page 36.

Optimizer directives
Use BOPT or IEFOPZ to direct ABO.

BOPT
You can use the BOPT optimizer directive to produce optimized modules based on explicit input and
output specifiers.

BOPT IN= dsn (mem_expr)

DD: ddname

(mem_expr)

path

OUT= dsn

(mem)

DD: ddname

(mem)

path

optimizer_option

IN
Specifies one input module that you want to optimize or multiple input modules when wildcards are
given in the mem_expr specifier.

16 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

OUT
Specifies one output module, or a PDS(E) for one or more output modules when the mem specifier is
omitted.

DD:ddname
Specifies a ddname.

dsn
Is a data set name that must include the high-level qualifier.

mem
Is a data set member name.

mem_expr
Is a data set member name that might include an expression. Only the members whose name string
match the expression will be processed. Matching is case insensitive.

A regular expression accepts the following symbols:

*
Matches any string.

?
Matches any character.

:
Can be used as a separator for multiple expressions. With multiple expressions any expression
matching the string counts as a match. The symbol (|) can also be used as a separator but is
deprecated as it is only interpreted correctly in a few EBCDIC code pages.

For example:

• To optimize only members PROGA and PROGB:

IN=DD:SYSBIN(PROGA:PROGB)

<>
Negates the entire expression that follows it. The symbol (!) can also be used for negation but is
deprecated as it is only interpreted correctly in a few EBCDIC code pages.

For example:

• To skip a single member named MEMA:

IN=DD:SYSBIN(<>MEMA)

• To skip all members whose names begin with MEMB:

IN=DD:SYSBIN(<>MEMB*)

• To skip members named MEMA and MEMB:

IN=DD:SYSBIN(<>MEMA:MEMB)

path
Is a full HFS path that starts with a slash (/), for example, /home/user1/a.out.opt.

optimizer_option
Is an optimizer option. For a list of optimizer options that you can specify, see “Optimizer options” on
page 19.

Notes:

1. The OUT option on BOPT is optional when the SCAN optimizer option is set to Y.
2. When mem_expr is specified on the IN option, all members that match mem_expr are selected for

optimization. Do not include a mem specifier on the OUT option when mem_expr is specified.

Chapter 5. Optimizing modules 17

3. When there is no mem specifier on the OUT option, the member names for OUT are determined to be
those that match the mem or mem_expr specifier on the IN option.

4. The IN specifier, the OUT specifier, and optimizer options can be in any order.
5. Due to different character encodings across EBCDIC code pages the deprecated symbols (|) for

expression separation and (!) for expression negation will only work properly in the following code
pages:

• IBM-1047
• IBM-37/1140
• IBM-285/1146
• IBM-924

6. The symbols (|) and (!) are deprecated and may be removed in the future.

For examples of the BOPT directive see “JCL examples” on page 31. For sample scenarios of using the
BOPT optimizer directive, see “Scenario 1: Optimization process with static deployment” on page 66 and
“Scenario 3: Optimization process using a hybrid approach” on page 68.

IEFOPZ
You can use the IEFOPZ optimizer directive to produce optimized modules based on the IEFOPZ
configuration.

Note: IEFOPZ is only supported on z/OS V2.2 and later. On z/OS 2.2 the APAR/PTF OA47689/UA90982
must be applied.

For information about IEFOPZ configuration, see step 2 in “Scenario 2: Optimization process with dynamic
deployment” on page 66.

IEFOPZ

SEL_STATE=

INACTIVE

ACTIVE

ANY

SEL_OLD= dsn_wc

(mem_wc)

SEL_ARCH= 10

11

12

ANY

optimizer_option

SEL_STATE
Instructs the optimizer to optimize mappings that match the given state.

ANY
Instructs the optimizer to optimize mappings marked as ACTIVE or INACTIVE.

ACTIVE
Instructs the optimizer only to optimize mappings marked as ACTIVE.

INACTIVE
Instructs the optimizer only to optimize mappings marked as INACTIVE.

18 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

SEL_OLD
Restricts optimization to mappings with OLD data sets that match the given selector.

dsn_wc
Is a data set name that might include wildcards using the asterisk (*) symbol. For example, *IN*.LOAD.

mem_wc
Is a data set member name that might include wildcards using the asterisk (*) symbol. For example,
M*.

SEL_ARCH
Instructs the optimizer to optimize mappings marked with the given architecture.

10
Instructs the optimizer only to optimize mappings marked as ARCH(10).

11
Instructs the optimizer only to optimize mappings marked as ARCH(11).

12
Instructs the optimizer only to optimize mappings marked as ARCH(12).

ANY
Instructs the optimizer to optimize mappings marked as ARCH(10), ARCH(11), or ARCH(12).

optimizer_option
Is an optimizer option. For a list of optimizer options that you can specify, see “Optimizer options” on
page 19.

Notes:

1. Mapping refers to the association of OLD to NEW modules in the IEFOPZ configuration.
2. By default, all INACTIVE modules in OLD data sets of an IEFOPZ configuration are optimized at

architecture levels as determined by NEW data sets and as determined by the IncludeMembers and
ExcludeMembers configuration specifiers. The SEL_OLD= and SEL_ARCH= are selectors that can be
used to restrict optimization or scanning to a subset of these modules.

The SEL_STATE= is a selector that can be used to change optimization or scanning to ACTIVE modules
or to modules of ANY state. While scanning of ACTIVE modules poses no risk, optimization of ACTIVE
modules could cause problems for programs that use the ACTIVE modules. Care should be used with
selectors SEL_STATE=ACTIVE or SEL_STATE=ANY and when optimization (as opposed to scanning) is
performed.

3. The IN specifier, the OUT specifier, and optimizer options can be in any order.

For examples of the IEFOPZ directive see “JCL examples” on page 31. For a sample scenario of using the
IEFOPZ optimizer directive, see “Scenario 2: Optimization process with dynamic deployment” on page
66.

Optimizer options
An optimizer option is an Automatic Binary Optimizer for z/OS option that is applicable to both the BOPT
and IEFOPZ optimizer directives.

Optimizer options can be placed at the start of the SYSIN file on one or more lines, or on the BOPT or
IEFOPZ optimizer directives.

A global option is an optimizer option that is specified on a line that does not include a BOPT or IEFOPZ
optimizer directive. The value of a global option is referred to as the global setting for the option.

When an optimizer option is specified on a particular line that has an optimizer directive, the value applies
to that optimization optimizer directive only and reverts back to the global setting for subsequent
statements.

Table 7 on page 20 summarizes the optimizer options that apply to both BOPT and IEFOPZ.

Chapter 5. Optimizing modules 19

Table 7. Optimizer options

Option Default Description

“ALLOW” on page 20 ALLOW=UNRESEXE Controls the type of program
modules that ABO will accept.

“ARCH” on page 21 ARCH=10 Specifies the target hardware
level.

“CSECT” on page 21 If you do not specify the CSECT
option, ABO will process all
eligible CSECTs.

Allows the user to limit
processing to one or more
CSECTs.

“LIST” on page 24 If you do not specify the LIST
option, the listing transforms are
placed in the location according
to SYSPRINT DD.

Specifies the location of the
generated listing transforms.

“LOG” on page 24 If you do not specify the LOG
option, ABO will not generate
member-level log files.

Specifies the location of the
member-level log files to be
additionally generated.

“REPLACE” on page 25 REPLACE=Y Controls whether the output
module is written or not.

“RTIBIND and the IBM Run Time
Instrumentation Profiler” on
page 26

RTIBIND=N | NO Controls whether to rebind with
the RTI program modules.

“SCAN” on page 29 SCAN=N Controls whether to optimize or
scan the program modules.

Note: The ARCH option can be specified at a global level and on the BOPT directive. It cannot be
specified on the IEFOPZ directive. For IEFOPZ, use the SEL_ARCH option to select parts of an IEFOPZ
configuration matching the SEL_ARCH value to optimize.

ALLOW
Purpose

The ALLOW option controls the type of program modules that the Automatic Binary Optimizer for z/OS will
accept.

ALLOW=

UNRESEXE

NOUNRESEXE

Default

ALLOW=UNRESEXE

Usage

When ALLOW=UNRESEXE is specified, ABO accepts fully bound modules or partially bound modules. The
only type of partially bound program modules accepted by the optimizer are those linked with the
CALL=NO or NCAL binder option. If the input module is fully bound then the optimized output module will
be fully bound. If the input module is partially bound then the optimized module will be partially bound.

When ALLOW=NOUNRESEXE is specified, ABO only accepts fully bound program modules (program
object or load module) and always produces a fully bound program module. If partially bound modules
are processed when ALLOW=NOUNRESEXE is specified then message BOZ1494S is issued.

20 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

ARCH
Purpose

The ARCH option specifies the target hardware level.

ARCH=

10

11

12

13

Default

ARCH=10

Usage

Use the ARCH option to specify the hardware level that the optimized modules produced by ABO will
target.

Optimized modules produced using a lower ARCH setting will run on a higher ARCH system. However
optimized modules from a higher ARCH setting will not work on a lower ARCH system.

ARCH setting Can only be run on IBM Z system

ARCH=10 zEC12, zBC12, z13, z13s, z14, z14 ZR1, z15, z15
T02

ARCH=11 z13, z13s, z14, z14 ZR1, z15, z15 T02

ARCH=12 z14, z14 ZR1, z15, z15 T02

ARCH=13 z15, z15 T02

If an invalid combination is attempted then the program is likely to terminate with the following runtime
LE message:

CEE3201S The system detected an operation exception (System Completion Code=0C1)

For details of these ARCH levels, see “Target hardware levels” on page 4.

CSECT
Purpose

The CSECT option allows you to limit processing to zero or more CSECTs.

CSECT= expr

Default

By default, if you do not specify the CSECT option, ABO processes all eligible CSECTs.

Parameter

expr
A regular expression for the CSECTs that you want to process. Only the CSECTs whose name string
match the expression will be processed. Matching is case insensitive.

Usage

A regular expression accepts the following symbols:

Chapter 5. Optimizing modules 21

*
Matches any string.

?
Matches any character.

:
Can be used as a separator for multiple expressions. With multiple expressions any expression
matching the string counts as a match. The symbol (|) can also be used as a separator but is
deprecated as it is only interpreted correctly in a few EBCDIC code pages.

For example:

• To optimize only CSECTs PROGA and PROGB:

CSECT=PROGA:PROGB

<>
Negates the entire expression that follows it. The symbol (!) can also be used for negation but is
deprecated as it is only interpreted correctly in a few EBCDIC code pages.

For example:

• To skip a single CSECT named PROGA:

CSECT=<>PROGA

• To skip all CSECTs whose names begin with PROGB:

CSECT=<>PROGB*

• To skip CSECTs named PROGA and PROGB:

CSECT=<>PROGA:PROGB

Notes:

• Spaces and brackets are not allowed in a regular expression.
• An expression must match the entire string. A partial match does not count as a match. This means the

expression M*2 matches the string MA2 but not the string MA2A.
• Due to different character encodings across EBCDIC code pages the deprecated symbols (|) for

expression separation and (!) for expression negation will only work properly in the following code
pages:

– IBM-1047
– IBM-37/1140
– IBM-285/1146
– IBM-924

• The symbols (|) and (!) are deprecated and may be removed in the future.

Example 1

In the following example, the CSECTs that do not match the wildcard filter are not processed.

JCL COMMAND

BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT CSECT=SUB*1*

OUTPUT (in OPTLOG)

...
10:46:04 Processing CSECT filter expression 'SUB*1*' on member CALLLITT
10:46:04 CSECT CALLLIT was excluded by filter - skip
10:46:04 Processing CSECT SUB01L00, in member CALLLITT
10:46:04 Optimizing CSECT SUB01L00 for zEC12

22 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

10:46:04 Succeeded in optimizing SUB01L00
10:46:04 Generating listing transform into DD:SYSPRINT
10:46:04 CSECT SUB02L00 was excluded by filter - skip
10:46:04 CSECT SUB03L00 was excluded by filter - skip
10:46:04 CSECT SUB04L00 was excluded by filter - skip
10:46:04 CSECT SUB05L00 was excluded by filter - skip
10:46:04 CSECT SUB06L00 was excluded by filter - skip
10:46:04 CSECT SUB07L00 was excluded by filter - skip
10:46:04 CSECT SUB08L00 was excluded by filter - skip
10:46:04 CSECT SUB09L00 was excluded by filter - skip
10:46:04 Processing CSECT SUB10L00, in member CALLLITT
10:46:04 Optimizing CSECT SUB10L00 for zEC12
10:46:04 Succeeded in optimizing SUB10L00
10:46:04 Generating listing transform into DD:SYSPRINT
10:46:04 Finished processing, processed 2 of 11 CSECTs in member CALLLITT

Example 2

The following example shows how to specify multiple expressions for matching.

JCL COMMAND

BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT CSECT=SUB01L00:SUB02L00

OUTPUT

...
10:49:13 Processing CSECT filter expression 'SUB01L00:SUB02L00' on member CALLLITT
10:49:13 CSECT CALLLIT was excluded by filter - skip
10:49:13 Processing CSECT SUB01L00, in member CALLLITT
10:49:13 Optimizing CSECT SUB01L00 for zEC12
10:49:13 Succeeded in optimizing SUB01L00
10:49:13 Generating listing transform into DD:SYSPRINT
10:49:13 Processing CSECT SUB02L00, in member CALLLITT
10:49:13 Optimizing CSECT SUB02L00 for zEC12
10:49:13 Succeeded in optimizing SUB02L00
10:49:13 Generating listing transform into DD:SYSPRINT
10:49:13 CSECT SUB03L00 was excluded by filter - skip
10:49:13 CSECT SUB04L00 was excluded by filter - skip
10:49:13 CSECT SUB05L00 was excluded by filter - skip
10:49:13 CSECT SUB06L00 was excluded by filter - skip
10:49:13 CSECT SUB07L00 was excluded by filter - skip
10:49:13 CSECT SUB08L00 was excluded by filter - skip
10:49:13 CSECT SUB09L00 was excluded by filter - skip
10:49:13 CSECT SUB10L00 was excluded by filter - skip
10:49:13 Finished processing, processed 2 of 11 CSECTs in member CALLLITT

Example 3

In the following example, MEM1 in dataset HLQ.IN.LOAD has two CSECTs named A1 and B1. To limit ABO
processing to only A1, use a CSECT=A* filter as follows:

JCL COMMAND

BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1) CSECT=A*

With this CSECT=A* filter in place the OPTLOG looks like the following:

OUTPUT

...
17:46:04 Processing CSECT filter expression ’A*’ on member MEM1
17:46:04 Processing CSECT A1, in member MEM1
17:46:04 Optimizing CSECT A1 for zEC12
17:46:04 Succeeded in optimizing A1
17:46:04 Generating listing transform into DD:SYSPRINT
17:46:04 CSECT B1 was excluded by filter – skip
17:46:04 Finished processing, processed 1 of 2 CSECTs in member MEM1
...

Alternatively CSECT=A* can be specified as a global option so it applies to all subsequent BOPT and
IEFOPZ directives unless overridden by a particular directive:

Chapter 5. Optimizing modules 23

//SYSIN DD *
 CSECT=A*
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1A)
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1B) CSECT=B*

After processing, the member MEM1A will contain the optimized CSECT A1 and the original CSECT B1,
and member MEM1B will contain the optimized CSECT B1 and the original CSECT A1.

LIST
Purpose

The LIST option specifies the location of the generated listing transforms.

LIST= dsn

(mem)

DD: ddname

(mem)

path

Default

By default, if you do not specify the LIST option, the listing transforms are placed in the location according
to SYSPRINT DD.

Parameters

dsn
Is a data set name that must include the high-level qualifier.

mem
Is a data set member name.

DD:ddname
Specifies a ddname.

path
Is a full HFS path that starts with a slash (/), for example, /home/user1/a.list.

Usage

The target of the LIST option can be one of the following items:

• A sequential data set or member of a PDSE (not PDS). The output of multiple CSECT optimizations are
added to this single sequential data set.

• A PDS or PDSE. When a CSECT is optimized, the listing transform particular to that CSECT is placed in a
member of the PDS or PDSE where the member name is based on the CSECT name (upper cased and
truncated to 8 characters). The contents of the member, if any, are overwritten even if the former
contents are produced by the optimizer in previous invocations.

• An HFS path. The output of multiple CSECT optimizations are added to this HFS file.

Related information

SYSPRINT DD.

LOG
Purpose

The LOG option specifies the location of the member-level log files to be additionally generated.

24 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

LOG= dsn

DD: ddname

path

Default

By default, if you do not specify the LOG option, ABO will not generate member-level log files. Note that
regardless of the LOG option the output from the entire ABO invocation will always be generated in the
location according to OPTLOG DD.

Parameters

dsn
Is a data set name that must include the high-level qualifier.

DD:ddname
Specifies a ddname.

path
Is a full HFS path that starts with a slash(/).

Usage

The target of the LOG option can be one of the following items:

• A PDS or PDSE. When a member is optimized, the log output particular to that member is placed in a
member of the PDS or PDSE where the member name is based on the optimized member name (upper-
cased and truncated to 8 characters). The contents of the member, if any, are overwritten even if the
former contents were produced by ABO in previous invocations.

• An HFS path pointing to a directory. When a member is optimized, the log output particular to that
member is placed in a file in the specified HFS directory where the file name is based on the optimized
member name appended with .log. The contents of the member, if any, are overwritten even if the
former contents were produced by ABO in previous invocations.

Notes:

1. The target of the LOG option must be either a PDS or PDSE with no member specified, or an HFS path
that points to a directory. If the target of the LOG option is specified as a PDS or PDSE with a member
specified, a sequential data set, or an HFS file, an error message will be issued.

2. The target data set of the LOG option should follow the recommended allocation parameters of the
OPTLOG in Table 12 on page 75.

Example 1
BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT LOG=HLQ.LOG.OUT

Example 2
BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT LOG=DD:LOG

Example 3
BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT LOG=/home/user1/logdir

For more information, see “Log files” on page 43.

REPLACE
Purpose

Controls whether the output module is written or not.

REPLACE=

Y

N

Chapter 5. Optimizing modules 25

Default

REPLACE=Y

Usage

When REPLACE=Y and SCAN=N, the optimized module is written to the output module regardless of
whether the output module exists.

• If the output module does not exist, the output module will be created and written.
• If the output module already exists, its content will be overwritten.

However, if there are no eligible COBOL CSECTs present that can be optimized, nothing is written to the
output module.

When REPLACE=N is specified, optimization or scanning of the input module is bypassed if the output
module already exists; nothing is written to the output module.

You can use REPLACE=N to bypass optimization for already optimized modules. For example, if after
binary optimization, you add new members to the original data sets and you want to optimize only the
new members, you can use a member wildcard with REPLACE=N as follows:

BOPT IN=HLQ.IN.LOAD(*) OUT=HLQ.OUT.LOAD REPLACE=N

In some cases, the optimizer prematurely terminates because of exceeded time or other abnormal
conditions. To solve the problem, you can incrementally build the optimized modules in a sequence of
jobs without spending time repeating optimizations done in an earlier job. Or you can use REPLACE=N in
these cases.

RTIBIND and the IBM Run Time Instrumentation Profiler
The IBM Run Time Instrumentation (RTI) Profiler is a performance analysis tool to collect and report on
the execution time CPU performance characteristics of your batch z/OS applications.

The RTIBIND option controls whether to rebind your modules with the RTI program modules to enable
the RTI performance profiling reports to be generated when the program runs.

All the Language Environment (LE) CSECTs in your application can be bound with the RTI program
modules to enable profiling in order to get a complete picture of overall CPU performance. This includes
programs compiled by the IBM COBOL, C/C++ and PL/I compilers as well as COBOL programs optimized
by ABO. The time spent in any LE library routines is also collected and reported.

RTIBIND=

N | NO

I | IN

O | OUT

A | ALL

Default

RTIBIND=N | NO

Usage

When RTIBIND=N | NO is specified, ABO optimizes any eligible CSECTs as usual, and does not rebind any
of the input program modules with the RTI program modules.

When RTIBIND=I | IN is specified, ABO does not perform any optimizations, but only rebinds all the input
program modules with the RTI program modules (that is, rebind the modules specified by the BOPT IN=
directive).

26 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

When RTIBIND=O | OUT is specified, ABO optimizes any eligible CSECTs as usual, and rebinds any input
program modules that have at least one eligible CSECT optimized with the RTI program modules (that is,
rebind the modules optimized and placed in the location specified by the BOPT OUT= directive).

When RTIBIND=A | ALL is specified, ABO optimizes any eligible CSECTs as usual, and rebinds these
optimized modules plus any input modules that are not optimized, with the RTI program modules (that is,
rebind the union of all the modules specified by BOPT IN= and OUT= directives).

New SYSLIB requirement for the JCL used to invoke ABO

When specifying RTIBIND=I | O | A, the JCL used to invoke ABO requires an additional DD name, SYSLIB,
to be present (see Appendix A, “JCL sample,” on page 75)

 //SYSLIB DD DSN=hlqboz.BOZ210.SBOZMOD1,DISP=SHR <- ABO install location
 // DD DSN=hlqcee.SCEELKED,DISP=SHR
 // DD DSN=hlqcee.SCEELKEX,DISP=SHR

If the SYSLIB DD is not specified when required, the severe message BOZ1426S is issued:

BOZ1426S Link library "SYSLIB" not specified or does not specify a PDS(E).

Capturing profiling results during program execution

Before using the RTI Profiler enabled modules, you must allocate a PDS or PDSE dataset in order to hold
the profiling results. The RTI Profiler generated report is stored into a member of this dataset. In the
following JCL examples, this dataset is named hlq.SYSPROFD.

The following table shows the recommended allocation parameters for hlq.SYSPROFD.

Table 8. Recommended allocation parameters

Data sets Recommended allocation parameters

hlq.SYSPROFD (as a PDS) Space units : CYLINDER
Primary quantity : 10
Secondary quantity : 10
Directory blocks : 10
Record format : FB
Record length : 80
Block size : 27920
Data set name type PDS

hlq.SYSPROFD (as a PDSE) Space units : CYLINDER
Primary quantity: 10
Secondary quantity : 10
Directory blocks : 10
Record format : FB
Record length : 80
Block size : 27920
Data set name type LIBRARY

In addition, when running the application containing the RTI rebound modules there are two
modifications required to your run step JCL in order to collect the profile.

In your existing JCL for executing your program:

• Add the ABO install location, for example hlqboz.BOZ210.SBOZMOD1, to the existing STEPLIB
• Add the DDNAME SYSPROFD as the location to receive the profiling results

Below is a JCL example for this step:

 //GO EXEC PGM=pgmname
 //STEPLIB DD DSN=hlq.OUT.LOAD.RTI,DISP=SHR <- the RTI rebound modules from ABO
 // DD DSN=hlqboz.BOZ210.SBOZMOD1,DISP=SHR <- add ABO install location
 //SYSPROFD DD DSN=hlq.SYSPROFD(pgmname),DISP=SHR <- add SYSPROFD DD

When program execution completes, the profiling results are contained in hlq.SYSPROFD(pgmname).

Chapter 5. Optimizing modules 27

If SYSPROFD is not added in the execution step, the message RIDATA: OPENING SYSPROFD FAILED is
generated to the job log. Also, the abend code ABEND=S000 U1130 REASON=00000000 is produced.

Understanding the RTI Profiler Results

The output of the RTI Profiler is a text file containing details per compiled or optimized module and CSECT
where the program is spending its time while running. There is a high-level summary provided as well as a
breakdown of timing samples down to the offsets within each CSECT. For more detailed information, see
Run Time Instrumentation report.

In conjunction with the corresponding compiler or ABO listing files for the programs being profiled, the
RTI Profiler output can help determine specific parts of your program, down to the machine instruction,
where there may be opportunities for improving application CPU performance.

An IBM support or development representative may also request the RTIBIND option be used and an RTI
Profile be collected, and its output sent to IBM along with other artifacts (e.g. listing files) from the
original compilation or optimization of your programs to aid in performance investigations.

RTI Profiler hardware and software prerequisites

The supported z/OS versions for using the RTI Profiler are:

• z/OS Version 2.4
• z/OS Version 2.3
• z/OS Version 2.2

The supported IBM Z systems for using the RTI Profiler enabled modules are zEC12 and later: zEC12,
zBC12, z13, z13s, z14, z14 ZR1, z15, and z15 T02.

RTI Profiler capabilities and restrictions

The RTI Profiler is best suited for in-depth CPU profiling of LE enabled batch applications but does not
provide other system-level performance metrics such as wait times, I/O performance or DASD usage.

The RTI Profiler can be used on all LE enabled batch applications including IMS batch and batch programs
that interact with Db2®. Running non-LE programs that have been rebound with the RTI program modules
is not supported and the result is unpredictable.

The RTI Profiler does not work for CICS® applications and is not supported for any application that is part
of a non-batch IMS environment.

The RTI Profiler will not work if your z/OS operating system is running on z/VM®. If run on z/VM guest, the
message RISTART: AUTH REQUEST FAILED is output to the job log.

The RTI Profiler does not provide CSECT level details for modules in LPA or that are managed by LLA.
Profiling sample information will only be reported at the module level for these cases.

If you require more complete and full featured application profiling, we recommend using a profiling tool
such as Application Performance Analyzer for z/OS in ADFz.

Notes:

1. SCAN=Y takes precedence over the RTIBIND option settings. Specifying SCAN=Y disables rebinding
with the RTI program modules and optimization of any eligible CSECTs regardless of the RTIBIND
option.

2. When processing a module originally linked with the AMODE 24 or RMODE 24 option and then
processed by ABO with the RTIBIND=I | O | A option, the warning message BOZ1490W is expected.
The BOZ1490W message reflects an AMODE/RMODE conflict due to rebinding with the AMODE 31 RTI
modules. The message has no impact on the original module execution. The program will still run
correctly in the original AMODE 24 or RMODE 24 mode.

3. The RTIBIND option is the most convenient way to enable modules for RTI profiling. However, if you
require more low-level control of the rebinding process, see Appendix E, “Manual RTI rebinding
instructions,” on page 99.

28 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://rtpdoc01.rtp.raleigh.ibm.com:9443/kc/SSERQD_2.1.0/com.ibm.opt.doc/pdtool.html?view=kc

4. If the program to be profiled was compiled using VS COBOL II or an ABO optimized VS COBOL II
compiled program, an extra step might be needed to rebind the module to replace the bootstrap
routine IGZEBST with the current version from LE. If you do not see any profiling output at the
SYSPROFD location after using RTIBIND and attempting to profile VS COBOL II or an ABO optimized
VS COBOL II compiled program, follow the steps below to replace the IGZEBST routine before using
RTIBIND (or before following the manual rebinding steps) to enable the module for RTI profiling.

//LKED EXEC PGM=IEWL,PARM=’options’ <- original link options
//SYSLIB DD DSN=hlqcee.SCEELKED,DISP=SHR
// DD DSN=hlqcee.SCEELKEX,DISP=SHR
//LOAD DD DISP=SHR,DSN=&LOAD <- original module that will be linked with new IGZEBST
//SYSLMOD DD DISP=SHR,DSN=&SYSLMOD(pgmname) <- output module location
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *
 INCLUDE SYSLIB(IGZEBST) <- new bootstrap to include from CEE
 INCLUDE LOAD(pgmname) <- original member from LOAD to link new parts into
 REPLACE -IMMED,IGZEBST <- bootstrap member to replace
 ENTRY pgmname
 NAME pgmname(R)
//*

SCAN
Purpose

The SCAN option instructs ABO whether to optimize or to scan the program modules

SCAN=

N

Y

Default

SCAN=N

Usage

When SCAN=N is in effect, ABO performs optimization on the input program modules.

When SCAN=Y is in effect, ABO scans the input program modules instead of performing optimization. No
output modules are produced.

The REPLACE=N option can affect whether scanning is performed:

• If REPLACE=N is specified on the BOPT directive and the output module on the OUT option already
exists, scanning of the module on the IN option is bypassed.

• If REPLACE=N is specified on the IEFOPZ directive, scanning of the member of the OLD data set is
bypassed if the member of the NEW data set already exists.

If you exclude the OUT option on the BOPT directive, scanning is always performed regardless of the
value of the REPLACE option.

In the scanning mode, the optimizer checks the input and output program modules, and lists the CSECTs
in the modules. Scanning output is written to the OPTLOG DD.

You can use SCAN=Y to test the SYSIN setup or to see what modules are present and their contents. If the
program is ineligible for optimization due to the original compiler used, this is also indicated in the
scanning output.

For more information, see “The log file for scanning” on page 44.

Comments
A comment is specified by starting with the (#) character.

When using the (#) character, the following rules apply:

Chapter 5. Optimizing modules 29

• If the first non-blank character on a line of the SYSIN file is the (#) character, the rest of the line is
ignored.

• If ABO sees a (#) character, which is preceded by a blank, on an input line of SYSIN file, the rest of the
line is ignored.

Example 1
#BOPT IN=DD:SYSBIN OUT=SYSBOUT
 #BOPT IN=SYSBIN OUT=SYSBOUT

In example 1, both of the BOPT directives are commented out. On the first line, the # character is in
column 1 and the rest of the line is ignored. On the second line, the first non-blank character is the #
character and the rest of the line is ignored.

Example 2
Optimizing all members of library
 # Note: we don't compile a member optimized earlier and found in the OUT dataset
BOPT IN=SYSBIN(*) OUT=SYSBOUT REPLACE=N

Example 2 shows adding two full lines of informational comments to the SYSIN file.

Example 3
BOPT IN=SYSBIN(*) OUT=SYSBOUT #

In example 3, the # character at the end of a line is ignored.

Example 4
BOPT IN=SYSBIN(*) OUT=SYSBOUT #optimizing library files

Example 4 shows adding a comment after a directive.

Line continuation
Line continuation in a SYSIN file is specified by the (+) or (-) continuation character, which indicates the
next line should be read as if it were a part of the previous line. Line continuation is not required but can
be used to break up long lines to simplify editing or to ease consumption by other tooling that may have
line length restrictions.

The (+) or (-) continuation character must be the last non-blank and non-comment character on a line.
When using the continuation characters, the following rules apply:

• The (-) character can only be used to continue a line following complete options, directives, or
specifiers. Line continuation begins at column 1 on the next line. The (-) character must be preceded by
one or more blanks.

• The (+) character can be used to continue a line following complete options, directives, or specifiers, or
in the middle of options, directives, or specifiers. Line continuation begins with the first non-blank
character on the next line. When continuing complete options, directives, or specifiers, the (+) character
must be preceded by one or more blanks.

• Blanks that precede the line continuation character will be included in the concatenated line.
• The comment character (#) takes precedence over the line continuation character. If a line continuation

character is part of a comment, it will be ignored as part of that comment and not continue the
comment.

An error message might be issued if the continuation character is in an unexpected position.

These examples show the JCL using the BOPT optimizer directive. The examples are not full examples.
They are intended to reflect what the user should specify in the SYSIN file. For basic JCL configuration,
see Appendix A, “JCL sample,” on page 75.

Example 1

//SYSIN DD *
ARCH=11 -
ALLOW=UNRESEXE

30 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

BOPT IN=HLQ.LOAD.APPXYZ1.ORIG(*) -
OUT=HLQ.LOAD.APPXYZ1.ABO

This example is interpreted by ABO as the following:

//SYSIN DD *
ARCH=11 ALLOW=UNRESEXE
BOPT IN=HLQ.LOAD.APPXYZ1.ORIG(*) OUT=HLQ.LOAD.APPXYZ1.ABO

Note that blanks preceding the continuation character are included in the concatenated string in all cases.

Example 2

//SYSIN DD *
 AR+
 CH=12 +
 ALLOW=UNRESEXE
BOPT IN=HLQ.LOAD.APPXYZ1.OR+
IG(*) -
OUT=HLQ.LOAD.APPXYZ1.ABO

This example shows how the (+) character allows continuing wherever desired on the next line (at the first
non-blank) instead of only at column 1, and how the (+) character can be used to continue an option,
directive, or specifier that is not complete. This example is interpreted by ABO as the following:

//SYSIN DD *
ARCH=12 ALLOW=UNRESEXE
BOPT IN=HLQ.LOAD.APPXYZ1.ORIG(*) OUT=HLQ.LOAD.APPXYZ1.ABO

Example 3

//SYSOPTF DD *
 # some comment + (1)
 ARCH=12 + #other comment - (2)
 ALLOW=UNRESEXE (3)
BOPT IN=HLQ.LOAD.APPXYZ1.ORIG(*) OUT=HLQ.LOAD.APPXYZ1.ABO (4)

This example is processed by ABO as the following:

//SYSOPTF DD *
ARCH=12 ALLOW=UNRESEXE
BOPT IN=HLQ.LOAD.APPXYZ1.ORIG(*) OUT=HLQ.LOAD.APPXYZ1.ABO

The (+) character on line 1 and the (-) character on line 2 are ignored because they are part of comments.
The (+) character on line 2 is treated as line continuation character because it is the last non-comment
and non-blank character on the line.

JCL examples
You can use the job control language (JCL) statements that are shown in these examples to process
compiled COBOL modules with the Automatic Binary Optimizer for z/OS.

Specifying optimization with BOPT
These examples show the JCL using the BOPT optimizer directive.

The examples in this section are not full examples. They are intended to reflect what the user should
specify in the SYSIN file. For basic JCL configuration, see Appendix A, “JCL sample,” on page 75.

Example 1. Specifying I/O modules using data set names

In this example, input and output modules are determined by the BOPT line. Input and output data set
names are given precisely rather than specified in ddnames.

...
//SYSIN DD *

Chapter 5. Optimizing modules 31

 ARCH=12
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1)

Example 2. Specifying I/O modules using ddnames

In this example, input and output modules are specified using ddnames.

...
//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
 ARCH=12
 BOPT IN=DD:SYSBIN(MEM1) OUT=DD:SYSBOUT(MEM1)

Example 3. Specifying I/O modules using HFS paths

In this example, the input and output modules are specified using HFS paths. You must use fully qualified
HFS paths that start with a slash (/).

...
//SYSIN DD *
 ARCH=12
 BOPT IN=/home/user1/a.out OUT=/home/user1/a.out.opt

Example 4. Specifying an input module and omitting the output member specifier

In this example, an input module is specified and the output member specifier is omitted. The member
name in the output PDS(E) for the optimized module will be the same name as the specified member of
the input PDS(E).

...
//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
 ARCH=10
 BOPT IN=DD:SYSBIN(MEM1) OUT=DD:SYSBOUT

Example 5. Specifying multiple input modules using an expression

In this example, multiple input modules are specified using an expression. The member name in the
output PDS(E) for an optimized module will be the same name as the corresponding member of the input
PDS(E).

To include modules with names that start with MEM:

...
//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
 ARCH=10
 BOPT IN=DD:SYSBIN(MEM*) OUT=DD:SYSBOUT

To exclude a single module named MEMA:

...
//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
 ARCH=10
 BOPT IN=DD:SYSBIN(<>MEMA) OUT=DD:SYSBOUT

To exclude all members whose names begin with MEMB:

...
//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *

32 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

 ARCH=10
 BOPT IN=DD:SYSBIN(<>MEMB*) OUT=DD:SYSBOUT

To exclude members named SUB1 and SUB2:

...
//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
 ARCH=10
 BOPT IN=DD:SYSBIN(<>SUB1:SUB2) OUT=DD:SYSBOUT

Example 6. Specifying multiple input modules by using multiple BOPT optimizer directives

In this example, multiple input modules are specified using multiple BOPT optimizer directives:

...
//SYSIN DD *
 ARCH=10
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1)
 BOPT IN=HLQ.IN.LOAD(MEM5) OUT=HLQ.OUT.LOAD(MEM5)

Example 7. Bypassing optimizations or scans with the REPLACE option

In this example, the REPLACE option is used. REPLACE=N bypasses optimization or scanning if the
associated output modules already exist. In this example, the optimizer performs optimization in the first
and third BOPT directives. The optimizer bypasses optimization in the second BOPT directive and
scanning in the last BOPT directive REPLACE=N is specified, and the output modules were created in the
first and third BOPT directives.

...
//SYSIN DD *
 ARCH=10
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1) REPLACE=Y
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1) REPLACE=N
 BOPT IN=HLQ.IN.LOAD(*) OUT=HLQ.OUT.LOAD REPLACE=Y
 BOPT IN=HLQ.IN.LOAD(*) OUT=HLQ.OUT.LOAD SCAN=Y REPLACE=N

Example 8. Specifying global and local optimizer options

In the example, global and local options are used. ARCH=11 and REPLACE=N apply to the first BOPT
directive; ARCH=10 and REPLACE=Y apply to the second BOPT directive.

...
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
 ARCH=10 REPLACE=N
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1) ARCH=11
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1) REPLACE=Y

Example 9. Switching to scan mode by using global SCAN

The following example changes the mode from optimizing input modules to scanning input modules using
the global option SCAN. In this scan mode, output modules are not written. The OUT option is processed,
for example for correct syntax, but otherwise ignored. For details about the SCAN option, see “SCAN” on
page 29.

The optimizer reverts back to the optimization mode for the second BOPT directive.

...
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
 ARCH=11 SCAN=Y
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1)
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1) SCAN=N

Chapter 5. Optimizing modules 33

Example 10. Specifying ALLOW options

This example shows a global setting of ALLOW=NOUNRESEXE being specified with a local override for the
second BOPT directive.

The first (MEM1) and third (MEM3) BOPT directives are done using ALLOW=NOUNRESEXE meaning that
only fully bound program modules will be accepted. If a partially bound program module is encountered
then the BOZ1494S message will be issued.

The second (MEM2) BOPT directive is done using ALLOW=UNRESEXE so both fully and partially bound
program modules are accepted as input.

...
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
 ARCH=11 ALLOW=NOUNRESEXE
 BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1)
 BOPT IN=HLQ.IN.LOAD(MEM2) OUT=DD:SYSBOUT(MEM2) ALLOW=UNRESEXE
 BOPT IN=HLQ.IN.LOAD(MEM3) OUT=DD:SYSBOUT(MEM3)

Specifying optimization with IEFOPZ
These examples show the JCL using the IEFOPZ optimizer directive.

The examples in this section are not full examples. They are intended to reflect what the user should
specify in the SYSIN file. For basic JCL configuration, see Appendix A, “JCL sample,” on page 75.

Example 1. Single ARCH configuration

This example shows the minimal JCL for running ABO with the IEFOPZ directive.

You can use this JCL when your IEFOPZ configuration includes only one ARCH level.

...
//SYSIN DD *
 IEFOPZ

Example 2. Multiple ARCH configuration
If your IEFOPZ configuration includes more than one ARCH level, specify separate IEFOPZ directives lines
to avoid listing file name collisions.

...
//SYSIN DD *
 IEFOPZ SEL_ARCH=11 LIST=HLQ.OUT1.ARCH11.LIST
 IEFOPZ SEL_ARCH=12 LIST=HLQ.OUT1.ARCH12.LIST

Example 3. Restricting optimization using the SEL_STATE and SEL_ARCH selectors
The following example produces optimized modules for those OLDNEW mappings that are marked as
INACTIVE. As with example 2, if mappings have more than one ARCH level, the LIST option is used to
avoid listing file name collisions.

...
//SYSIN DD *
 IEFOPZ SEL_STATE=INACTIVE SEL_ARCH=10 LIST=HLQ.OUT.ARCH10.LIST
 IEFOPZ SEL_STATE=INACTIVE SEL_ARCH=11 LIST=HLQ.OUT.ARCH11.LIST

Example 4. Restricting optimization using the SEL_OLD selector

The following example produces optimized modules for members of OLD data sets that match given
patterns.

In the first line, optimized modules will be produced for all members of HLQ.IN.LOAD.

34 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

In the second line, optimized modules will be produced for data set members that match M* in OLD data
sets matching HLQ.IN.*. REPLACE=N is specified on the second line to avoid re-optimizing modules from
the first line.

...
//SYSIN DD *
 IEFOPZ SEL_OLD=HLQ.IN.LOAD
 IEFOPZ SEL_OLD=HLQ.IN*.*(M*) REPLACE=N

Recommended settings for the z/OS JCL REGION and JCL
MEMLIMIT parameters

ABO optimization techniques
To generate high performing optimized modules, beyond those possible from Enterprise COBOL V4 and
earlier, ABO performs advanced analysis and uses code optimization techniques that require substantial
machine resources.

In addition, since ABO is easily invoked on many compiled programs at once, the overall resources can be
high due to the amount of processing requested. An entire data set, potentially composed of many
modules, where each module can itself contain many compiled programs (CSECTs), can be optimized in
bulk using ABO. Therefore, the total resources required by ABO for optimizing hundreds or thousands of
compiled programs at once will be higher compared to a compilation process that is operating on a single
source file at a time.

The time and memory required to optimize a module is based on the following factors:

• The number of CSECTs in the module.
• The complexity of each CSECT. Complexity is impacted by both the size of the compiled PROCEDURE

DIVISION statements and also by the size of the input program's DATA DIVISION.

Setting the z/OS JCL REGION and JCL MEMLIMIT parameters appropriately
As shown in the Appendix A, “JCL sample,” on page 75, the JCL REGION parameter should be set to 0M
to allow ABO the memory it requires to operate.

ABO will use storage above the 2 GB BAR to optimize large CSECTs. This means that the z/OS MEMLIMIT
parameter should be set to a high enough value in order to allow ABO processing to complete
successfully.

The recommended REGION setting of 0M will set MEMLIMIT to NOLIMIT. However, this NOLIMIT value
may have been overriden to a lower value by a MEMLIMIT setting on JOB or EXEC statements or by the
exit routine IEFUSI. The amount of storage required by ABO will depend on the number and size of
CSECTs being optimized.

If MEMLIMIT=NOLIMIT has been overridden to a lower value and this MEMLIMIT setting is not high
enough, you may get one of these ABO messages:

BOZ1145U Insufficient memory in the compiler to continue compilation.
BOZ1428U Insufficient memory encountered during binder API "&1": return code=&2
 reason code=&3. Terminating optimizer.
BOZ1449U Unhandled out of memory exception

A MEMLIMIT setting of 10GB or more may be required for optimizing very large CSECTs, or a high number
of smaller CSECTs. If any of the ABO BOZ1145U, BOZ1428U or BOZ1449U messages are encountered
then increase the MEMLIMIT setting to a higher value.

For more information on JCL REGION and JCL MEMLIMIT parameters, see the z/OS MVS Initialization and
Tuning Reference and the z/OS MVS Initialization and Tuning Guide.

Chapter 5. Optimizing modules 35

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en

Specifying the language to be used for ABO messages
The CEEOPTS DD is used to specify the language for ABO produced messages.

By default, messages are in English. To specify that you want Japanese messages, add the following code
to your JCL:

//CEEOPTS DD *
 NATLANG(JPN)
/*

Invoking ABO from TSO, REXX and assembler code
This section describes how to invoke ABO from TSO, REXX and the assembler.

Optimizing under TSO
Under TSO, you can use TSO commands, command lists (CLISTs), REXX execs, or ISPF to optimize COBOL
programs using traditional MVS data sets. You can use TSO commands or REXX execs to optimize
programs using z/OS UNIX files.

With each method, you need to allocate the data sets and request the optimization following these steps:

1. Use the ALLOCATE command to allocate data sets. You can allocate data sets in any order. However,
you must allocate all needed data sets before you start to optimize.

2. Provide the optimizer parameters within your SYSIN data set.
3. Use the CALL command at the READY prompt to request optimization:
CALL ’hlqboz.SBOZMOD1(BOZOPT)’

You can specify the ALLOCATE and CALL commands on the TSO command line, or, if you are not using
z/OS UNIX files, you can include them in a CLIST.

You can allocate z/OS UNIX files for all the optimizer data sets if they are not PDS or PDSE libraries. For
example, if ABO parameters are stored in the UNIX file /u/myu/abo.parms, then the ALLOCATE
statements have the following form:

 Allocate File(SYSIN) Path(’/u/myu/abo.parms’) Pathopts(ORDONLY) Filedata(TEXT)

ALLOCATE and CALL for optimizing under TSO
The following example shows how to specify the ALLOCATE and CALL commands when you are optimizing
under TSO. Notice that all the files can be either new or existing ones, except the input files SYSIN and
SYSBIN that must exist before optimization starts.

 [READY]
FREE F(SYSPRINT SYSIN OPTLOG OPTERR CEEDUMP SYSBIN
SYSBOUT)
 [READY]
ALLOC F(SYSPRINT) DA(ABO.LISTING) SPACE(10,10) CYL NEW CATALOG RECFM(V B) LRECL(512)
BLKSIZE(27998) DSORG(PS)
 [READY]
ALLOC FI(OPTLOG) DA(ABO.OPTLOG) SPACE(10,10) CYL NEW CATALOG RECFM(V B) LRECL(512)
BLKSIZE(27998) DSORG(PS)
 [READY]
ALLOC FI(OPTERR) DA(ABO.OPTERR) SPACE(10,10) CYL NEW CATALOG RECFM(V B) LRECL(512)
BLKSIZE(27998) DSORG(PS)
 [READY]
ALLOC FI(CEEDUMP) DA(ABO.CEEDUMP) SPACE(50,10) CYL NEW CATALOG RECFM(F B) LRECL(133)
BLKSIZE(27930) DSORG(PS)
 [READY]
ALLOC FI(SYSIN) DA(ABO.SYSIN) SHR /* supply ABO parameters within SYSIN file
*/
[READY]
ALLOC FI(SYSBIN) DA(IN.LOAD) SHR /* supply COBOL load library to be optimized */
 [READY]

36 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

ALLOC FI(SYSBOUT) DA(OUT.LOAD) SHR /* supply load library for optimized load modules */
 [READY]
CALL ‘hlqboz.SBOZMOD1(BOZOPT)'
 [READY]
FREE F(SYSPRINT SYSIN OPTLOG OPTERR CEEDUMP SYSBIN SYSBOUT)

CLIST for optimizing under TSO
The following example shows a CLIST for optimizing under TSO:

PROC 1 HLQBOZ
FREE F(SYSPRINT SYSIN OPTLOG OPTERR CEEDUMP SYSBIN
SYSBOUT)
ALLOC FI(SYSPRINT) DA(ABO.LISTING) SHR
ALLOC FI(SYSIN) UNIT(SYSDA) SPACE(1,0) TRACKS NEW +
RECFM(F B) LRECL(80) BLKSIZE(800) DSORG(PS)
OPENFILE SYSIN OUTPUT
SET SYSIN = &STR(BOPT IN=DD:SYSBIN(MEMBER) OUT=DD:SYSBOUT(MEMBER))
PUTFILE SYSIN
CLOSFILE SYSIN
ALLOC FI(OPTLOG) DA(ABO.OPTLOG) SHR
ALLOC FI(OPTERR) DA(ABO.OPTERR) SHR
ALLOC FI(CEEDUMP) DA(ABO.CEEDUMP) SHR
ALLOC FI(SYSBIN) DA(IN.LOAD) SHR
ALLOC FI(SYSBOUT) DA(OUT.LOAD) SHR
CALL '&HLQBOZ..SBOZMOD1(BOZOPT)'
FREE F(SYSIN SYSPRINT OPTLOG OPTERR CEEDUMP SYSBIN SYSBOUT)

REXX for optimizing under TSO
The following example shows a REXX for optimizing under TSO:

/*==========================>> REXX <<================================*/
 Parse Arg hlqboz . /* get argument */
 IF HLQBOZ = '' THEN DO
 SAY 'HLQBOZ ARGUMENT MISSING'
 EXIT
 END
 ADDRESS TSO
 msgstat = MSG("OFF")
 "FREE FILE (SYSIN SYSPRINT)"
 "ALLOC FI(SYSPRINT) DA(ABO.LISTING) SHR"
 "ALLOC FI(OPTLOG) DA(ABO.OPTLOG) SHR"
 "ALLOC FI(OPTERR) DA(ABO.OPTERR) SHR"
 "ALLOC FI(CEEDUMP) DA(ABO.CEEDUMP) SHR"
 "ALLOC FI(SYSBIN) DA(IN.LOAD) SHR"
 "ALLOC FI(SYSBOUT) DA(OUT.LOAD) SHR"
 "ALLOC FI(SYSIN) NEW CYL SPACE(1,1) RECFM(F B)",
 " LRECL(80) BLKSIZE(800) DSORG(PS)"
 line.1 = 'ARCH=11'
 line.2 = 'BOPT IN=DD:SYSBIN(MEMBER) OUT=DD:SYSBOUT(MEMBER)'
 "EXECIO 2 DISKW SYSIN (STEM line. FINIS"
 "CALL '"hlqboz".SBOZMOD1(BOZOPT)'"
 "FREE FI(OPTLOG OPTERR CEEDUMP SYSPRINT SYSBIN SYSBOUT SYSIN)"
 msgstat = MSG("ON")

REXX for optimizing under TSO batch, directing OPTLOG and SYSPRINT output to the library
members.

Sometimes you may need to optimize every member of the entire load library or even more than one load
library without having to type multiple BOPT statements.

The following example shows a TSO batch job used to run ABOMEMBS REXX located in the data set
referenced by the SYSEXEC DD name. ABOMEMBS goes through the SYSBIN data sets concatenation and
individually optimizes every data set member found in that concatenation.

//OPTMEMBS EXEC PGM=IKJEFT01,PARM='ABOMEMBS',
REGION=0M
//STEPLIB DD DISP=SHR,DSN= hlqboz.SBOZMOD1
//SYSEXEC DD DISP=SHR,DSN=hlq.CLIST /* supply ABOMEMBS REXX member within SYSEXEC
library */
//SYSTSPRT DD SYSOUT=*,DCB=(LRECL=132,RECFM=FBA,BLKSIZE=1320)
//SYSTSIN DD DUMMY

Chapter 5. Optimizing modules 37

//OPTERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSBIN DD DISP=SHR,DSN=hlq.INLOAD1 /* supply one or more COBOL load libraries to be
optimized */
// DD DISP=SHR,DSN=hlq.INLOAD2
// DD DISP=SHR,DSN=hlq.INLOAD3
//SYSBOUT DD DISP=SHR,DSN=hlq.OUTLOAD
//OPTLOG DD DISP=(,CATLG),DSN=hlq.OPTLOG,UNIT=3390, /* supply new or existing PDS/PDSE or
SEQ file */
// SPACE=(CYL,(5,5,20)),DSNTYPE=LIBRARY,
// DCB=(RECFM=VB,LRECL=512,BLKSIZE=0)
//SYSPRINT DD DISP=(,CATLG),DSN=hlq.SYSPRINT,UNIT=3390, /* supply new or existing PDS/PDSE or
SEQ file */
// SPACE=(CYL,(5,5,20)),DSNTYPE=LIBRARY,
// DCB=(RECFM=VB,LRECL=512,BLKSIZE=0)
//SYSIN DD *
 ARCH=11
 SCAN=N
optionally put BOPTs below this line for specific library members optimization
 BOPT IN=hlq.INLOAD7(A*) OUT=hlq.OUTLOAD LOG=hlq.OPTLOG LIST=hlq.SYSPRINT
/*

For every member found in the above SYSBIN DD concatenation, ABOMEMBS invokes ABO with SYSIN,
OPTLOG, SYSBIN and SYSPRINT files individually allocated for that member.

For example, for member MEM1 located in the hlq.INLOAD1 data set, it will allocate the SYSBIN file
hlq.INLOAD1, reallocate the OPTLOG file hlq.OPTLOG(MEM1) and the SYSPRINT file
hlq.SYSPRINT(MEM1), if the OPTLOG and SYSPRINT files allocated in the above JCL are PDS or PDSE data
sets. Otherwise, it will keep using JCL allocation of these files.

To construct the SYSIN file for MEM1, it will use all the ABO parameters listed in the above JCL SYSIN file
down to the first BOPT statement, and then append it with internally generated BOPT statement. Here is
an example of the SYSIN file for MEM1:

===
ARCH=11
SCAN=N
BOPT IN=DD:SYSBIN(MEM1) OUT=DD:SYSBOUT(MEM1)
===

After all the individual SYSIN, OPTLOG, SYSPRINT and SYSBIN files are allocated, ABO is invoked to
optimize MEM1.

ABOMEMBS exec repeats this process for every member in the SYSBIN concatenation. If the BOPT
statement is present in the above JCL SYSIN file, after all the members in the SYSBIN concatenation are
optimized, ABOMEMBS reallocates the OPTLOG and SYSPRINT files to SYSOUT, reallocates the SYSIN file
containing all the same statement as the original JCL SYSIN file, and invokes ABO one more time to
proceed with the parameters explicitly specified in the SYSIN file.

This approach can be useful to optimize all the library members just by including it into the SYSBIN
concatenation, without having to specify any additional BOPT explicitly, and optionally, including an
additional BOPT statement when you need to optimize some members of the library only. The JCL cards in
the above JCL can be in any order.

ABOMEMBS generates the following SYSTSPRT output:

============== Processing hlq.INLOAD1 data set ========================
Member ADD10 processed, rc=4
Member CALLEE processed, rc=0
Member CALLEE1 processed, rc=0
…
============== Processing hlq.INLOAD2 data set ========================
Member COBPGM processed, rc=0
Member DJSIEV85 processed, rc=0
Member IAMASM processed, rc=4
…
============== Processing hlq.INLOAD3 data set ========================
Member TEMPNAM6 processed, rc=12
Member TEMPNAM7 processed, rc=0
Member TEMPNAM8 processed, rc=0
…
============== Processing SYSIN statements =============================
ARCH=11

38 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

SCAN=N
BOPT IN=hlq.INLOAD7(A*) OUT=hlq.OUTLOAD LOG=hlq.OPTLOG LIST=hlq.SYSPRINT
==
READY
END

The following is an example of the ABOMEMBS REXX source code:

 BROWSE hlq.CLIST(ABOMEMBS)
 Command ===>
*** Top of Data
/*==========================>> REXX <<================================*/
 Parse Arg

 X = LISTDSI(STEPLIB FILE)
 If x > 0 Then Do
 Say 'Check STEPLIB allocation' ; Exit
 End
 optimizer = "'"||SYSDSNAME||'(BOZOPT)'||"'"
 flaglog = 0 /* assume OPTLOG is sequential */
 X = LISTDSI(OPTLOG FILE)
 IF x = 0 & SYSDSORG = 'PO' Then Do
 optlogds = SYSDSNAME ; flaglog = 1
 End
 flaglist = 0 /* assume SYSPRINT is sequential */
 X = LISTDSI(SYSPRINT FILE)
 IF x = 0 & SYSDSORG = 'PO' Then Do
 sysprtds = SYSDSNAME ; flaglist = 1
 End
 "EXECIO * DISKR SYSIN (STEM line. FINIS" /* read in SYSIN parameters into
line. array */
 n = line.0 + 1 /* assume no explicit BOPT specified. n is per-member BOPT
line number */
 Do l = 1 To
line.0
 PARSE UPPER VALUE line.l WITH
line.l
 If POS('BOPT ',line.l) > 0 Then
Do
 n = l ; flagbopt = 1 ; leave /* leave when first BOPT found
*/

End

 linea.l = line.l /* copy all lines before first BOPT into linea. array
*/

End

 X = LISTDSI(SYSBIN
FILE)
 If x > 0 Then
Do
 Say 'Check SYSBIN allocation' ;
Exit

End

 x =
outtrap(concatl.)
 lista
status
 x =
outtrap(off)
 /* i2 is a line with last dsn in SYSBIN concatenation
*/
 i2 = concatl.0 - 1 /* assume that SYSBIN concatenation is a last in JCL
*/
 Do i = 1 To
concatl.0
 If substr(concatl.i,3,6) = 'SYSBIN' Then
Do

Chapter 5. Optimizing modules 39

 i1 = i - 1 ; leave /* i1 line with first dsn in concatenation
*/

End

 End
 k = i + 2
 If k < concatl.0 Then Do
 Do i = k To concatl.0 by 2
 If substr(concatl.i,3,1) <> ' ' Then Do
 i2 = i - 3 ; leave /* i2 line with last dsn in concatenation */
 End
 End
 End
 Else i2 = i1 /* when SYSBIN DD with a single data set is a last JCL card
*/

 msgstat = MSG("OFF")

 Do i = i1 To i2 by 2 /* loop trough SYSBIN concatenation */
 sysbinds = strip(concatl.i)
 Say '============== Processing 'sysbinds' data set =============='
 x=outtrap('row.')
 Address TSO "LISTDS '"sysbinds"' members"
 x=outtrap('off')
 If row.0 < 6 Then Do
 Say 'Check SYSBIN file' ; Exit
 End
 DO J = 7 TO row.0 /* loop trough member list */
 PARSE VALUE row.J WITH memn alias
 "FREE FI(SYSIN)"
 "ALLOC FI(SYSIN) NEW CYL SPACE(1,1) RECFM(F B)",
 " LRECL(80) BLKSIZE(800) DSORG(PS)"
 linea.n = 'BOPT IN=DD:SYSBIN('||memn||') ',
 'OUT=DD:SYSBOUT('||memn||')'
 "EXECIO * DISKW SYSIN (STEM linea. FINIS"
 If flaglog = 1 Then Do
 "FREE FI(OPTLOG)"
 optlogm = "'"||optlogds||'('||memn||')'||"'"
 "ALLOC FI(OPTLOG) DA("optlogm") SHR"
 End
 If flaglist = 1 Then Do
 "FREE FI(SYSPRINT)"
 sysprtm = "'"||sysprtds||'('||memn||')'||"'"
 "ALLOC FI(SYSPRINT) DA("sysprtm") SHR"
 End
 "FREE FI(SYSBIN)"
 "ALLOC FI(SYSBIN) DA('"sysbinds"') SHR"
 "CALL "optimizer /* optimize member */
 Say 'Member 'memn' processed, rc='rc
 END /* end of member list loop */
 End /* end of concatenation list loop */
 If flagbopt = 1 Then Do
 "FREE FI(SYSIN)"
 "ALLOC FI(SYSIN) NEW CYL SPACE(1,1) RECFM(F B)",
 " LRECL(80) BLKSIZE(800) DSORG(PS)"
 "EXECIO * DISKW SYSIN (STEM line. FINIS"
 "FREE FI(OPTLOG)"
 "ALLOC FI(OPTLOG) SYSOUT"
 "FREE FI(SYSPRINT)"
 "ALLOC FI(SYSPRINT) SYSOUT"
 "CALL "optimizer /* optimize with BOPTs provided in SYSIN */
 Say '============== Processing SYSIN statements =============='
 Do i = 1 To line.0
 Say line.i
 End
 Say '==='
 End
 msgstat = MSG("ON")
EXIT

40 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Starting the optimizer from an assembler program
You can invoke ABO programmatically from within an HLASM program.

Before you start to optimize, complete these steps:

1. Allocate all the needed data sets, either by using dynamic allocation within your assembler program or
specifying the DD cards in the job JCL used for your assembler program invocation. The following DD
names must be allocated: SYSPRINT, SYSBIN, SYSBOUT, SYSIN, OPTLOG, OPTERR, CEEDUMP.

2. Provide the ABO parameters within your SYSIN data set.

You can start ABO from within an assembler program by using the LINKX or ATTACHX macro because
those two are 64 bit mode compatible and ABO is running in AMODE 64.

The following is an example of the LINKX macro in list form:

 symbol {LINKX} EP=BOZOPT,AMODE64OK=YES,PLIST8=YES,SF=L

The following is an example of the LINKX macro in execute form:

 LINKX EP=BOZOPT,AMODE64OK=YES,PARAM=(addr),PLIST8=YES, *
 MF=(E,#LINKX),SF=(E,#LINK2)

where # is used as a prefix symbol.

EP
Specifies the symbolic name of ABO.

PARAM
Specifies the address parameters list to be passed from the assembler program to ABO. In the
example, addr can be any value because it’s ignored by BOZOPT program which directly reads
parameters supplied in the SYSIN file.

PLIST8=YES
Defines the size of the parameter list entries for a parameter list to be built by LINKX based on the
PARAM keyword, as an 8-bytes-per-entry parameter list.

AMODE64OK=YES
Indicates that the system is to accept an attempt to link to an AMODE 64 target routine from an
AMODE 24 or AMODE 31 routine.

SF=L
Specifies the list form of the LINKX macro.

When ABO completes processing, it puts a return code in register 15.

Assembler program starting the optimizer

The following example shows the ABO invocation from an assembler program:

//JOBCARD JOB
//*
//ASMHCL PROC MAC='SYS1.MACLIB',MAC1='SYS1.MODGEN',U=3390,
// MAC2='SYS1.MACLIB'
//*--***
//* A S M H C L H-ASSEMBLER ***
//* IBM-PROCEDURE: COMPILE + LINK ***
//*--***
//ASM EXEC PGM=ASMA90,PARM=OBJECT,REGION=0M
//SYSLIB DD DSN=&MAC,DISP=SHR
// DD DSN=&MAC1,DISP=SHR
// DD DSN=&MAC2,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=&U,SPACE=(TRK,(60,45))
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=1089
//SYSPUNCH DD DUMMY
//SYSLIN DD DSN=&&OBJSET,UNIT=&U,SPACE=(80,(2000,500)),
// DISP=(MOD,PASS)
//LKED EXEC PGM=HEWLH096,
// PARM='XREF,LET,LIST,AC=0,FILL=NONE',

Chapter 5. Optimizing modules 41

// COND=(8,LT,ASM)
//SYSLIN DD DSN=&&OBJSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=hlq.CALLABO.LOAD,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=(&U,SEP=(SYSLIN,SYSLMOD)),
// SPACE=(1024,(50,20))
//SYSPRINT DD SYSOUT=*
// PEND
//*
// EXEC ASMHCL
//ASM.SYSIN DD
*
 YREGS
CALLABO CSECT
CALLABO AMODE 31
CALLABO RMODE ANY
 STM R14,R12,12(R13)
 USING CALLABO,R12
 LR R12,R15 LOAD BASE REGISTER
 LA R9,SAVE POINT TO CURRENT SAVEAREA
 ST R9,8(,R13) A(CURRENT_SA) IN OLD_SA
 ST R13,4(,R9) A(OLD_SA) IN CURRENT_SA
 LR R13,R9 R13=A(CURRENT_SAVEAREA)

 LLGTR R12,R12 allow 64-bit
addressability
 BAL R14,LINKOPT invoke BOZOPT

DONE DS 0H
 L R13,4(,R13)
 ST R15,16(,R13)
 LM R14,R12,12(R13)
 BR R14

LINKOPT DS 0H
 XR R15,R15 nullify parm addr, BOZOPT ignores
it
 LLGTR R15,R15
 SAM64
 LINKX EP=BOZOPT,AMODE64OK=YES,PARAM=((R15)),PLIST8=YES, *
 MF=(E,#LINKX),SF=(E,#LINK2)
 SAM31
 B DONE

 DS 0F
SAVE DC XL72'00'
#LINKX LINKX EP=BOZOPT,AMODE64OK=YES,PLIST8=YES,SF=L
#LINK2 LINKX EP=BOZOPT,AMODE64OK=YES,PLIST8=YES,SF=L
 LTORG
 END
//LKED.SYSIN DD *
 PAGE CALLABO
 NAME CALLABO(R)
//

The following is a sample JCL to run the CALLABO program:

//OPT EXEC PGM=CALLABO,REGION=0M
//STEPLIB DD DSN=hlqboz.SBOZMOD1,DISP=SHR
// DD DSN=hlq.CALLABO.LOAD,DISP=SHR
//OPTLOG DD SYSOUT=*
//OPTERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSBIN DD DSN=hlq.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=hlq.OUT.LOAD,DISP=SHR
//SYSIN DD *
supply ABO directives down this line
 BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT

42 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 6. Understanding output from the
optimization process

Log files

IBM Automatic Binary Optimizer for z/OS generates a log file that helps you identify and resolve problems.

You can diagnose problems at optimize time by inspecting the log file that is generated unconditionally by
ABO into the OPTLOG DD (see Table 6 on page 15). The log file contains diagnostic information about
optimization and scanning.

To generate additional member-level log files, use the LOG option.

The log file for optimization
When optimization is performed on a module (SCAN=N optimizer option is in effect), the log file includes
the following information:

• File name information of the input module being processed
• Names of the CSECTs being optimized
• File name information of the listing transform for each optimized CSECT
• File name information of the output optimized module
• A time stamp for each line of the OPTLOG and a header for the date
• Other diagnostic information including error messages

Example 1:

The following log file shows COBOL CSECTs from members MEMA and MEMB of data set HLQ.IN1.LOAD
are being optimized. Module MEMA has two COBOL CSECTs named SUB1 and SUB2 that are optimized.
Module MEMB has one COBOL CSECT named PROGB that is optimized. Listing transforms are all placed in
the default SYSPRINT DD. Optimized modules are written to the HLQ.OUT1.LOAD data set.

5697-AB2 IBM Automatic Binary Optimizer for z/OS 2.1.0

======== Sept 24 2019 ========
10:53:16 Optimizer build level: tr_v21_binopt_20190730_1658_t54Rw7MMEem46oTHworqTQ
(Jul 30 2019 20:05:19)
10:53:16 Processing HLQ.IN1.LOAD, member MEMA
10:53:16 Processing CSECT SUB1, in member MEMA
10:53:16 Optimizing CSECT SUB1 for zEC12
10:53:16 Succeeded in optimizing SUB1
10:53:16 Generating listing transform into DD:SYSPRINT
10:53:16 Processing CSECT SUB2, in member MEMA
10:53:16 Optimizing CSECT SUB2 for zEC12
10:53:16 Succeeded in optimizing SUB2
10:53:16 Generating listing transform into DD:SYSPRINT
10:53:16 Finished processing, processed 2 of 2 CSECTs in member MEMA
10:53:16 Save HLQ.OUT1.LOAD (MEMA) succeeded
10:53:16 Processing HLQ.IN1.LOAD, member MEMB
10:53:16 Processing CSECT PROGB, in member MEMB
10:53:16 Optimizing CSECT PROGB for zEC12
10:53:16 Succeeded in optimizing PROGB
10:53:16 Generating listing transform into DD:SYSPRINT
10:53:16 Finished processing, processed 1 of 1 CSECTs in member MEMB
10:53:16 Save HLQ.OUT1.LOAD (MEMB) succeeded
10:53:16 Exiting with return code: 0

© Copyright IBM Corp. 2015, 2021 43

Example 2:

The following log files show the output for the member-level log files produced by the same
HLQ.IN1.LOAD as the previous example with LOG=HLQ.LOG.OUT specified.

The contents of HLQ.LOG.OUT(MEMA):

5697-AB2 IBM Automatic Binary Optimizer for z/OS 2.1.0
======== Sept 24 2019 ========
10:53:16 Optimizer build level: tr_v21_binopt_20190730_1658_t54Rw7MMEem46oTHworqTQ (Jul 30 2019
20:05:19)
10:53:16 Processing HLQ.IN1.LOAD, member MEMA
10:53:16 Processing CSECT SUB1, in member MEMA
10:53:16 Optimizing CSECT SUB1 for zEC12
10:53:16 Succeeded in optimizing SUB1
10:53:16 Generating listing transform into DD:SYSPRINT
10:53:16 Processing CSECT SUB2, in member MEMA
10:53:16 Optimizing CSECT SUB2 for zEC12
10:53:16 Succeeded in optimizing SUB2
10:53:16 Generating listing transform into DD:SYSPRINT
10:53:16 Finished processing, processed 2 of 2 CSECTs in member MEMA
10:53:16 Save HLQ.OUT1.LOAD (MEMA) succeeded
10:53:16 Exiting with return code: 0

The contents of HLQ.LOG.OUT(MEMB):

5697-AB2 IBM Automatic Binary Optimizer for z/OS 2.1.0
======== Sept 24 2019 ========
10:53:16 Optimizer build level: tr_v21_binopt_20190730_1658_t54Rw7MMEem46oTHworqTQ (Jul 30 2019
20:05:19)
10:53:16 Processing HLQ.IN1.LOAD, member MEMB
10:53:16 Processing CSECT PROGB, in member MEMB
10:53:16 Optimizing CSECT PROGB for zEC12
10:53:16 Succeeded in optimizing PROGB
10:53:16 Generating listing transform into DD:SYSPRINT
10:53:16 Finished processing, processed 1 of 1 CSECTs in member MEMB
10:53:16 Save HLQ.OUT1.LOAD (MEMB) succeeded
10:53:16 Exiting with return code: 0

The log file for scanning
When scanning is performed (SCAN=Y optimizer option is in effect), the log file shows:

• File name information of the input module being scanned
• Names of the CSECT of the module being scanned
• Other diagnostic messages

Example:

The following log file shows modules MEMA and MEMB of data set HLQ.MEM1.LOAD are being scanned.
Scanning output shows each of the CSECTs in the modules. The COBOL compiler version used for the
compilation and the "Signature information bytes" extracted from the CSECT are displayed for the COBOL
CSECTs SUB, SUB2 and PROGB. "Signature information bytes" are documented in the COBOL
Programming Guide and provide information about the compiled program.

5697-AB2 IBM Automatic Binary Optimizer for z/OS 2.1.0

======== Sept 24 2019 ========
10:58:23 Optimizer build level: tr_v21_binopt_20190730_1658_t54Rw7MMEem46oTHworqTQ
(Jul 30 2019 20:05:19)
10:58:23 Processing HLQ.IN1.LOAD, member MEMA
 Language ID Records:
 id 5688187 v21 m00 2015281 resident EDCOEXTS
 id 5655S7100 v42 m00 2015281 resident SUB
 Enterprise COBOL V4: start=0x10, length=4.19 (kBytes)
 Signature information bytes:
 a0487d4c 20000000 00880100 00000040
 08000000 000000 00008004 1400
 id 5655S7100 v42 m00 2015281 resident SUB2
 Enterprise COBOL V4: start=0x10d8, length=4.20 (kBytes)
 Signature information bytes:

44 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

 a0487d4c 20000000 00880100 00000040
 08000000 000000 00008004 1400
 id 569623400 v01 m06 2013071 resident CEESG005
 id 569623400 v01 m06 2013072 resident CEEBETBL
 id 569623400 v01 m06 2013072 resident CEESTART
10:58:23 Processing HLQ.IN1.LOAD, member MEMB
 Language ID Records:
 id 5688187 v21 m00 2015281 resident EDCOEXTS
 id 5655S7100 v42 m00 2015281 resident PROGB
 Enterprise COBOL V4: start=0x10, length=8.19 (kBytes)
 Signature information bytes:
 a0487d4c 20000000 00880100 00000040
 08000000 000000 00008004 1400
 id 569623400 v01 m06 2013072 resident CEESTART
10:58:23 Exiting with return code: 0

Listing transform

The listing transform describes the changes made by the Automatic Binary Optimizer for z/OS to your
already compiled program module. It shows how the instructions in the input binary map to the optimized
instructions. A listing transform is produced for every CSECT that is optimized. The listing transform is
intended to complement the compiler listing generated when the input binary was originally compiled
from source. While the listing transform does not depend on the compiler listing, using the two together
will allow you to better understand how IBM Automatic Binary Optimizer for z/OS transformed your
binary.

A listing transform is generated unconditionally for every optimized CSECT; no special options or flags
need to be specified. By default, listing transforms are generated into the SYSPRINT DD.

The listing transform is also used by “Application Delivery Foundation for z/OS” on page 73.

Listing transform contents
The listing transform is provided to help in diagnosing problems encountered during the execution of the
optimized program. The listing transform is primarily intended for use by debugging tools such as IBM
Debug for z/OS.

A listing transform contains the following information:

• A summary of the optimization options
• The optimized instructions interspersed with the input instructions
• A literal pool containing any new literals created by ABO
• A PPA4 section containing information about the optimized CSECT
• An automatic map, also known as a dynamic storage area (DSA) map, of any new stack symbols that

were created by ABO
• An input instructions section containing the complete list of instructions and compiler options for the

CSECT being optimized

Summary of optimization parameters
This section contains the name of the architecture level for which the program is optimized, and the date
and time stamp of both the input binary, along with the compiler used to produce it. The date and time
stamp of the output binary is also shown.

Example:

Invocation Parameters:
 Architecture Level: zEC12

Input IDRL Record: 5655S7100 v42 m00 2013122

Chapter 6. Understanding output from the optimization process 45

 Name: Enterprise COBOL V4
 Version: 42
 Mod Level: 00
 Compiled Date (YYYYDDD): 2013122

Output IDRL Record: 5697-AB2 v21 m00 2019256
 Name: IBM Automatic Binary Optimizer for z/OS
 Version: 21
 Mod Level: 00
 Optimized Date (YYYYDDD): 2019256

Optimized instructions
This section makes up the majority of the data in the listings transform. It is similar to the object code
section of the listings generated by various IBM COBOL compilers, such as IBM Enterprise COBOL V5 and
V6. Each CSECT that was optimized begins with the PROC psuedo opcode and the name of the CSECT as
its operand.

Example:

 (1) (2) (3) (4) (5)

 000258 000000 PROC PROGA
 000258 183F 000000 LR R3,R15
 00025A 5800 3008 000000 L R0, 8(,R3)
 00025E 1E01 000000 ALR R0,R1
 000260 5500 C00C 000000 CL R0, 12(,R12)
 000264 0DF0 000000 BASR R15,R0
 000266 47D0 F00C 000000 BC R13, 12(,R15)
 00026A 58F0 C300 000000 L R15, 768(,R12)
 00026E 0DEF 000000 BASR R14,R15
 000270 181F 000000 LR R1,R15
 000272 50D0 1004 000000 ST R13, 4(,R1)
 000276 5000 104C 000000 ST R0, 76(,R1)
 00027A D203 1000 3058 000000 MVC 0(4,R1), 88(R3)
 000280 D703 1084 1084 000000 XC 132(4,R1), 132(R1)
 000286 5090 105C 000000 ST R9, 92(,R1)
 00028A 18D1 000000 LR R13,R1
 00028C 41A0 D120 000000 LA R10, 288(,R13)

The preceding example shows the optimized instructions produced for a CSECT named PROGA. The five
sections of an optimized instruction are described as follows:

1. The hexadecimal offset in the CSECT of the optimized instruction
2. The hexadecimal representation of the instruction bytes
3. The hexadecimal CSECT offset of the "source" instructions for which these optimized instructions were

generated
4. Instruction opcode
5. Instruction operands

Interspersed with the optimized instructions are the "source" instructions for which the optimized
instructions are generated. Lines that begin in column 5 are the optimized instructions, and the lines that
begin in column 1 are the "source" instructions. In the following example, the first two lines, starting at
column 1, are the PACK and OI source instructions at hex offsets 00042C and 000432 respectively. The
third line, starting in column 5, is the ABO generated instruction 'CDZT'. Notice that the "source" hex offset
of the CDZT is 00042c, which shows that it was generated for the PACK instruction in the input module.

Example:

00042C PACK 272(4,13),0(7,8)
000432 OI 276(13),15
 0004C4 ED07 4000 00AA 00042C CDZT FP0,_WSA[0x12c] 0(8,R4),0x0
000436 PACK 280(4,13),8(7,8)
00043C OI 284(13),15
 0004CA ED07 4008 10AA 000436 CDZT FP1,_WSA[0x12c] 8(8,R4),0x0
000440 AP 272(4,13),280(4,13)
000446 UNPK 16(7,8),272(4,13)
 0004D0 B3D2 1000 000440 ADTR FP0,FP0,FP1

46 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

00044C OI 23(8),240
000450 L 2,248(0,,13)
 0004D4 ED07 4010 00A8 00044C CZDT FP0, 16(8,R4),0x0

The literal pool
ABO places any new literals it creates at the end of the code section. These sections are named Constant
Data Snippets in the listing transform. There may be zero or more Constant Data Snippets in the listing
and their contents are very similar to the literal pool that is created by the original compiler. The original
literal pool remains intact and continues to be used, just as in the input binary.

Example:

 (1) (2) (3) (4)

 L0032: # Constant Data Snippet
 000550 4040 4040 4040 4040 DC X'4040404040404040'
 000558 4040 4040 4040 4040 DC X'4040404040404040'
 000560 4040 4040 4040 4040 DC X'4040404040404040'
 000568 4040 4040 4040 0000 DC X'4040404040400000'
 000570 8000 0000 0000 0000 DC X'8000000000000000'
 000578 0000 0000 0000 0000 DC X'0000000000000000'
 000580 0000 0001 0000 0000 DC X'0000000100000000'
 000588 C9C7 E9E2 D9E3 C3C4 DC X'C9C7E9E2D9E3C3C4'
 000590 E2E8 E2D6 E4E3 4040 DC X'E2E8E2D6E4E34040'
 000598 0E00 0000 0000 0000 DC X'0E00000000000000'

A description of the four sections of data is as follows:

1. The hexadecimal offset from the start of the CSECT to these bytes in the literal pool
2. The hexadecimal representation of the bytes in the literal pool
3. The label denoting the start of the literal pool
4. Assembler syntax of these bytes

Additional DSA and TGT Bytes Allocated section
This section displays in hexadecimal number of bytes any additional DSA or TGT bytes allocated by the
optimizer

Example:

DSA WILL BE ALLOCATED FOR AN ADDITIONAL 000001A8 BYTES
TGT WILL BE ALLOCATED FOR AN ADDITIONAL 00000000 BYTES

The PPA4 section
The PPA4 section contains information about the optimization of the program module. For example, it
contains the time and date of optimization, the length of the code section and other information.

Example:

 (1) (2) (3) (4)

 PPA4: Entry Point Constants
 046668 00000000 =X'00000000' Flags 1
 04666C 00000300 =X'00000300' Flags 2
 046670 F2F0F1F6 =C'2019' Compiled Year
 046674 F0F8F2F1 =C'0913' Compiled Date MMDD
 046678 F1F2F3F0F2F3 =C'123023' Compiled Time HHMMSS
 04667E F0F1F0F2F0F0 =C'010200' Compiler Version
 046684 0004706A =F'290922' Code Length
 046688 0B020000 =X'0B020000' Options
 04668C 00000028 =X'00000028' A(PPA4-ListName)
 PPA4 End

Chapter 6. Understanding output from the optimization process 47

A description of the four sections of PPA4 follows:

1. The offset in hexadecimal in the CSECT of PPA4 section entry
2. The hexadecimal representation of the bytes in the PPA4 section
3. Assembler syntax of the bytes in the PPA4
4. Description of the data in the PPA4

The automatic map
The automatic map contains the offsets and sizes (in hexadecimal) of symbols that are created by ABO.
These offsets are relative to a base established at the end of the original DSA. The automatic map does
not show automatics in the original program or temporaries created by the original compiler. ABO will
establish a general purpose register (GPR) to contain the start offset of the "new" DSA. All newly created
automatics will be referenced with this new register as the base.

Example:

 (1) (2) (3)

 * * * * * A U T O M A T I C M A P * * * * *

 OFFSET (HEX) LENGTH (HEX) NAME

 0 4 _GPR0
 4 4 _GPR1
 8 4 _GPR2
 C 4 _GPR3
 10 4 _GPR4
 14 4 _GPR5
 18 4 _GPR6
 1C 4 _GPR7
 20 4 _GPR8
 24 4 _GPR9
 28 4 _GPR10
 2C 4 _GPR11
 30 4 _GPR12
 34 4 _GPR13

A description of the three sections of the automatic map follows:

1. Hexadecimal offset of the stack symbol, relative to the start of the new stack
2. Hexadecimal length of the symbol in bytes
3. Name of the symbol

Input instructions
This section contains the complete list of instructions from the input module. There is one section for
each CSECT that was optimized. These input instructions are the same as those already shown in the
Optimized instructions section. In that section, the input instructions are shown interspersed with the
corresponding optimized instructions, and as such are not a complete and ordered list. Each CSECT has
its own prolog section and is displayed after "Compiler Options in Effect" finishes. This prolog section is
displayed for CSECTs compiled by compiler releases from COBOL/370 1.1 to Enterprise COBOL V4R2.
CSECTs compiled by VS COBOL II 1.3 and 1.4 do not display the prolog section.

The input instructions section begins with the COBOL compiler version used for the compilation and the
"Signature information bytes" extracted from the CSECT. "Signature information bytes" are documented in
the COBOL Programming Guide and provide information about the compiled program. These information
bytes are decoded and the corresponding compiler options that were in effect are printed. Note that the
decoded compiler options may not exactly match in content and formatting those displayed in the original
compiler listing. This is because ABO decodes the options only according to the signature information
bytes present in the input CSECT instead of the full original source and options specified during the
original compilation process.

48 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

In the following example, the COBOL CSECT named PROGA was optimized.

 (1) (2) (3)

 * * * * * I N P U T I N S T R U C T I O N S * * * * *

 id 5655S7100 v42 m00 2020072 resident PROGA
 Enterprise COBOL V4: start=0x0, length=1.39 (kBytes)
 Signature information bytes:
 a4487d4c 20000000 00080000 00000000
 08000000 00000000 00808014 00
 Compiler Options in effect:
 ADV
 ARITH(COMPAT)
 NOAWO
 NOBLOCK0
 Compilation unit is a program.
 NOCICS
 CODEPAGE(1140)
 NOCURRENCY
 Default DDNAME for OUTDD will be used
 DATA(31)
 NODATEPROC
 DBCS
 NODECK
 NODLL
 NODUMP
 DYNAM
 NOEXPORTALL
 NOFASTSRT
 INTDATE(ANSI)
 NOLIB
 LIST
 NOMAP
 NOMDECK
 NONAME
 NONUM
 NUMCLS(PRIM)
 NUMPROC(NOPFD)
 OBJ
 NOOFFSET
 NOOPTIMIZE
 PGMNAME(LONGUPPER)
 QUOTE
 RENT
 RMODE(ANY)
 SEQUENCE
 SIZE(MAX)
 SOURCE
 NOSQL
 SQLCCSID
 NOSSRANGE
 TERM
 NOTEST
 NOTHREAD
 TRUNC(STD)
 NOVBREF
 NOWORD
 XMLPARSE(XMLSS)
 XREF
 YEARWINDOW(1900)
 ZWB

 * * * * * P R O L O G U E I N F O * * * * *

 000000 47F0F028 BYPASS CONSTANTS. BRANCH TO @STM
 000004 00 ZERO NAME LENGTH FOR DUMPS
 000005 C3C5C5 CEE EYE CATCHER
 000008 00000110 STACK FRAME SIZE
 00000C 00000014 OFFSET TO PPA1 FROM PRIMARY ENTRY
 000010 47F0F001 RESERVED

 CSECT: PROGA PPA1
 000014 98 OFFSET TO LENGTH OF PROGRAM NAME FROM PPA1
 000015 CE CEL SIGNATURE
 000016 AC CEL FLAGS
 000017 00 MEMBER FLAGS FOR COBOL
 000018 000000B6 ADDRESS OF PPA2
 00001C 00000000 OFFSET TO THE BDI
 000020 00000000 ADDRESS OF ENTRY POINT DESCRIPTORS

Chapter 6. Understanding output from the optimization process 49

 000024 0000 RESERVED
 000026 00 DSA FPR 8-15 SAVE AREA OFFSET/16
 000027 00 DSA FPR 8-15 SAVE AREA BIT MASK
 000028 90ECD00C STM STARTS HERE: SAVE CALLER'S REGISTERS
 00002C 4110F038 GET ADDRESS OF PARMLIST INTO R1
 000030 98EFF04C LOAD ADDRESSES FROM @BRVAL
 000034 07FF DO ANY NECESSARY INITIALIZATION
 000036 0000 AVAILABLE HALF-WORD
 000038 00000000 1) PRIMARY ENTRY POINT ADDRESS
 00003C 00000000 2) AVAILABLE
 000040 000003A0 3) DAB ADDRESS
 000044 000000AE 4) ENTRY POINT NAME ADDRESS
 000048 00000000 5) CURRENT ENTRY POINT ADDRESS
 00004C 00000262 6) PROCEDURE CODE ADDRESS
 000050 000018C0 7) INITIALIZATION ROUTINE
 000054 000000CA 8) ADDRESS OF PARM LIST FOR CEEINT
 000058 00104001 DSA WORD 0 CONSTANT
 00005C 00000008 AVAILABLE WORD
 000060 D7D9D6C7 AVAILABLE WORD
 000064 C1404040 AVAILABLE WORD
 000068 F2F0F2F0 YEAR OF COMPILATION
 00006C F0F3F1F2 MONTH/DAY OF COMPILATION
 000070 F1F3F3F8 HOURS/MINUTES OF COMPILATION
 000074 F2F1 SECONDS FOR COMPILATION DATE
 000076 F0F4F0F2F0F0 VERSION/RELEASE/MOD LEVEL OF PROD
 00007C 0474 UNSIGNED BINARY CODE PAGE CCSID VALUE
 00007E 0000 AVAILABLE HALF-WORD
 000080 1400 INFO. BYTES 28-29
 000082 076C SIGNED BINARY YEARWINDOW OPTION VALUE
 000084 A4487D4C2000 INFO. BYTES 1-6
 00008A 000000080000 INFO. BYTES 7-12
 000090 000000000800 INFO. BYTES 13-18
 000096 0000000000 INFO. BYTES 19-23
 00009B 00 COBOL SIGNATURE LEVEL
 00009C 00000003 # DATA DIVISION STATEMENTS
 0000A0 00000002 # PROCEDURE DIVISION STATEMENTS
 0000A4 000080 INFO. BYTES 24-26
 0000A7 80 INFO. BYTE 27
 0000A8 40404040 USER LEVEL INFO (LVLINFO)
 0000AC 0005 LENGTH OF PROGRAM NAME
 0000AE D7D9D6C7C1404040 PROGRAM NAME

 CSECT: PROGA PPA2
 0000B6 05 CEL MEMBER IDENTIFIER
 0000B7 00 CEL MEMBER SUB-IDENTIFIER
 0000B8 00 CEL MEMBER DEFINED BYTE
 0000B9 01 CONTROL LEVEL OF PROLOG
 0000BA 00001810 VCON FOR LOAD MODULE
 0000BE 00000000 OFFSET TO THE CDI
 0000C2 FFFFFFB2 OFFSET TO TIMESTAMP/VERSION INFO
 0000C6 00000000 ADDRESS OF CU PRIMARY ENTRY POINT
 0000CA 00000038 PARM LIST FOR CEEINT: POINTER TO PRIMARY ENTRY PT ADDR
 0000CE 00000008 OFFSET TO PARAMETERS FOR CEEINT
 0000D2 00000006 PARAMETERS FOR CEEINT 1) NUMBER OF ENTRIES IN PARM LIST
 0000D6 00000038 2) POINTER TO PRIMARY ENTRY PT ADDR
 0000DA 00001810 3) ADDRESS OF CEESTART
 0000DE 000017E8 4) ADDRESS OF CEEBETBL
 0000E2 00000005 5) CEL MEMBER IDENTIFIER
 0000E6 00000000 6) FOR CEL MEMBER USE
 0000EA 00000000 AVAILABLE WORD
 0000EE 00000000 AVAILABLE WORD
 0000F2 00000000 AVAILABLE WORD
 0000F6 00000000 AVAILABLE WORD
 0000FA 0000 AVAILABLE HALF-WORD

 CSECT: PROGA PGT SECTION

 0000FC (LIT+0) 00000001 40404040 40404040 40404040 40404040 40404040 40404040
40404040 |.... |
 00011C (LIT+32) 40400000 2A05D7C0 2A05D890 2A05D8E4
2A05D8FA | P{..Q...QU..Q.|

 CSECT: PROGA CGT SECTION

 000130 (LIT+0) FFFFFFFC 00001000 00000001 00000000 899540D7 D9D6C7C1 E2E8E2D6
E4E34040 |................in PROGASYSOUT |
 000150 (LIT+32) C9C7E9E2 D9E3C3C4 00000000 0000012C 00000001 00000130 00000001
00000000 |IGZSRTCD........................|
 000170 (LIT+64) 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 |................................|

50 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

 000190 (LIT+96) 80000000 40000000 00000000 00000000 F0F0F0F9 F7F9F1F6 F4F0F3F6
F0400000 |....0009791640360 ..|
 0001B0 (LIT+128) 00000000 00000000 00000000 00400000 000025C0 0001C000 05080000
24001B01 |.............{..{.........|
 0001D0 (LIT+160) 40000008 08000024 0018FF40 00000000 40C00001 40000508 00002400
1B02C000 | {..{.|
 0001F0 (LIT+244) 05080000
24001B00 |........|

 * * * * * E N D O F P R O L O G U E I N F O * * * * *

 0001F8 5820 9128 L 2,296(0,,9)
 0001FC D201 2008 A00C MVC 8(2,2),12(10)
 000202 D201 2010 A00C MVC 16(2,2),12(10)
 000208 D207 2018 A028 MVC 24(8,2),40(10)
 00020E D203 2020 A014 MVC 32(4,2),20(10)
 000214 D203 2028 A014 MVC 40(4,2),20(10)
 00021A D203 2030 A014 MVC 48(4,2),20(10)
 000220 D207 2038 A020 MVC 56(8,2),32(10)
 000226 D203 2040 A014 MVC 64(4,2),20(10)
 00022C 920E 2048 MVI 72(2),14
 000230 920F 2050 MVI 80(2),15
 000234 D203 2058 A014 MVC 88(4,2),20(10)
 00023A D203 2080 A014 MVC 128(4,2),20(10)
 000240 D21D 2060 C004 MVC 96(30,2),4(12)
 000246 5830 D0F0 L 3,240(0,,13)
 00024A 07F3 BCR -1,3
 00024C 5820 912C L 2,300(0,,9)
 000250 D208 2010 A078 MVC 16(9,2),120(10)
 000256 D203 2020 A081 MVC 32(4,2),129(10)
 00025C 5830 D0F4 L 3,244(0,,13)
 000260 07F3 BCR -1,3
 000262 183F LR 3,15
 000264 4100 1110 LA 0,272(0,,1)
 000268 5500 C00C CL 0,12(0,,12)
 00026C 0DF0 BASR 15,0
 00026E 47D0 F00C BC 13,12(0,15)
 000272 58F0 C300 L 15,768(0,,12)
 000276 0DEF BASR 14,15
 000278 181F LR 1,15
 00027A 50D0 1004 ST 13,4(0,,1)
 00027E 5000 104C ST 0,76(0,,1)
 000282 D203 1000 3058 MVC 0(4,1),88(3)
 000288 D703 1084 1084 XC 132(4,1),132(1)
 00028E 5090 105C ST 9,92(0,,1)
 000292 18D1 LR 13,1
 000294 58C0 90E8 L 12,232(0,,9)
 000298 1812 LR 1,2
 00029A 50D0 D058 ST 13,88(0,,13)
 00029E 58A0 C024 L 10,36(0,,12)
 0002A2 D203 D088 A010 MVC 136(4,13),16(10)
 0002A8 BF2F 9144 ICM 2,15,324(9)
 0002AC 58B0 C028 L 11,40(0,,12)
 0002B0 4780 B0CA BC 8,202(0,11)
 0002B4 5830 905C L 3,92(0,,9)
 0002B8 58F0 30F4 L 15,244(0,,3)
 0002BC 4110 A0B3 LA 1,179(0,,10)
 0002C0 0DEF BASR 14,15
 0002C2 5A20 C000 A 2,0(0,,12)
 0002C6 5020 9144 ST 2,324(0,,9)
 0002CA 9140 9134 TM 308(9),64
 0002CE 4710 B0F2 BC 1,242(0,11)
 0002D2 D203 D0F8 D0F4 MVC 248(4,13),244(13)
 0002D8 4120 B0EC LA 2,236(0,,11)
 0002DC 5020 D0F4 ST 2,244(0,,13)
 0002E0 47F0 B054 BC 15,84(0,11)
 0002E4 D203 D0F4 D0F8 MVC 244(4,13),248(13)
 0002EA 9140 9134 TM 308(9),64
 0002EE 58B0 C028 L 11,40(0,,12)
 0002F2 4710 B116 BC 1,278(0,11)
 0002F6 D203 D0FC D0F0 MVC 252(4,13),240(13)
 0002FC 4120 B110 LA 2,272(0,,11)
 000300 5020 D0F0 ST 2,240(0,,13)
 000304 47F0 B000 BC 15,0(0,11)
 000308 D203 D0F0 D0FC MVC 240(4,13),252(13)
 00030E 9140 9057 TM 87(9),64
 000312 58B0 C028 L 11,40(0,,12)
 000316 4710 B136 BC 1,310(0,11)
 00031A 9120 9054 TM 84(9),32
 00031E 47E0 B12E BC 14,302(0,11)
 000322 9620 D084 OI 132(13),32

Chapter 6. Understanding output from the optimization process 51

 000326 9640 9057 OI 87(9),64
 00032A 47F0 B136 BC 15,310(0,11)
 00032E 9640 9134 OI 308(9),64
 000332 9601 D084 OI 132(13),1
 000336 5820 905C L 2,92(0,,9)
 00033A 58F0 202C L 15,44(0,,2)
 00033E 4110 A0A7 LA 1,167(0,,10)
 000342 0DEF BASR 14,15
 000344 47F0 B162 BC 15,354(0,11)
 000348 9120 D084 TM 132(13),32
 00034C 47E0 B162 BC 14,354(0,11)
 000350 58F0 20F4 L 15,244(0,,2)
 000354 4110 A095 LA 1,149(0,,10)
 000358 0DEF BASR 14,15
 00035A 5830 9144 L 3,324(0,,9)
 00035E 5B30 C000 S 3,0(0,,12)
 000362 5030 9144 ST 3,324(0,,9)
 000366 9128 9054 TM 84(9),40
 00036A 4770 B18C BC 7,396(0,11)
 00036E 5830 9128 L 3,296(0,,9)
 000372 48F0 3008 LH 15,8(0,,3)
 000376 58D0 D004 L 13,4(0,,13)
 00037A 58E0 D00C L 14,12(0,,13)
 00037E 980C D014 LM 0,12,20(13)
 000382 07FE BCR -1,14
 000384 D20B D100 A06C MVC 256(12,13),108(10)
 00038A 5840 9128 L 4,296(0,,9)
 00038E 4830 4008 LH 3,8(0,,4)
 000392 5030 D10C ST 3,268(0,,13)

 * * * * * E N D O F I N P U T I N S T R U C T I O N S * * * * *

A description of the three sections of the input instructions section follows:

1. The hexadecimal offset in the input CSECT of the original instruction
2. Instruction mnemonic
3. Instruction operands

SYSPRINT DD and LIST option
Use the SYSPRINT DD or LIST options to specify the locations of the generated listing transforms.

The target of SYSPRINT or LIST can be one of the following items:

• A sequential data set or member of a PDSE (not PDS). The output of multiple CSECT optimizations are
added to this sequential data set in optimization order.

• A PDS or PDSE. When a CSECT is optimized, the listing transform particular to that CSECT is placed in a
member of the PDS or PDSE where the member name is based on the CSECT name (upper cased and
truncated to 8 characters). The contents of the member, if any, are overwritten even if the former
contents are produced by ABO in previous invocations.

• An HFS path. The output of multiple CSECT optimizations are added to this HFS file.

The LIST option takes precedence over the SYSPRINT DD. If you specify the LIST option, it will override
the SYSPRINT DD. When the LIST option is specified, you can omit the SYSPRINT DDname.

Note:

The ABO listing contains detailed transformation information and can therefore become very large.
Specifying SYSPRINT DD target as SYSOUT might cause the JES2 spools to reach a system specified line
limit. When the spool line limit is reached, the JES2 passes control to an installation exit routine but the
ABO job may or may not be terminated. Although the spool line limit can be increased using the JOBPARM
L option, the maximum L setting of 999999 might still not be large enough for the ABO listing.

To avoid this problem, it is recommended that SYSPRINT specify a PDS, PDSE or HFS location as
documented in this section.

52 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Example
The following JCL example uses a PDSE in the SYSPRINT DD so that listing transforms are written to the
members of the PDSE.

//SYSIN DD *
 BOPT IN=HLQ.IN.LOAD(MOD*) OUT=HLQ.OUT.LOAD
 …
//SYSPRINT DD DSN=HLQ.LIST.PDSE,DISP=SHR

In this example, the input program modules are specified as HLQ.IN.LOAD(MOD*), which means, optimize
all eligible members in HLQ.IN.LOAD with names beginning with "MOD".

There are two members in the input data set, MOD1 and MOD2. Within these two program modules, are
various CSECTs:

Table 9. Input modules and their containing CSECTs

HLQ.IN.LOAD CSECTs

MOD1 PROG1A

PROG1B

PROG1C

MOD2 PROG2A

PROG2B

ABO will optimize each of these CSECTs, one at a time, and produce two outputs for each CSECT:

1. The optimized CSECT
2. The listing transform for the CSECT

The optimized CSECT has the same name as the input CSECT, and the optimized CSECT will be placed in a
program module that has the same member name as the input program module. However, the new
program modules will be placed into a new PDSE called 'HLQ.OUT.LOAD'

Table 10. Output 1: Optimized modules and their CSECTs

HLQ.OUT.LOAD CSECTs

MOD1 PROG1A

PROG1B

PROG1C

MOD2 PROG2A

PROG2B

The listings, generated for each of the optimized CSECT, are placed into the PDSE 'HLQ.LIST.PDSE', as
separate members. Each such PDSE member will have the same name as the input CSECT name. The
results is that HLQ.LIST.PDSE will have 5 members, PROG1A, PROG1B, PROG1C, PROG2A and PROG2B.

Table 11. Output 2: Listing transforms

HLQ.LIST.PDSE

PROG1A

PROG1B

PROG1C

PROG2A

Chapter 6. Understanding output from the optimization process 53

Table 11. Output 2: Listing transforms (continued)

HLQ.LIST.PDSE

PROG2B

54 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 7. Using the ABO Assistant

Overview of the ABO Assistant
The IBM Automatic Binary Optimizer (ABO) Assistant is a suite of tools to automate the main parts of
finding and optimizing your top CPU consuming COBOL batch applications.

Starting from your provided SMF data, the SMF Analyzer component of the ABO Assistant will produce a
prioritized report on the jobs and programs that consume the most CPU across all the jobs running on
your system. Optionally, the JCL locations to run these programs will also be displayed.

For programs known to contain COBOL, these JCL locations can then be used as input to the second
component of the ABO Assistant called the Program Analyzer and Optimizer. This component will
automate all the individual steps required to efficiently optimize the top CPU consuming individual COBOL
batch applications using ABO and to clearly report the CPU time savings from using ABO.

After inputting the JCL used to run each COBOL batch application, one at a time, to the Program Analyzer
and Optimizer, it automatically does the following:

• Rebinds the original program to enable an RTI Profile to be collected
• Runs the rebound original program to report the CPU time taken by the program and to collect the RTI
profile

• Optimizes the top CPU consuming COBOL CSECTs as found in the RTI profile with ABO
• Runs the ABO optimized program
• Reports the CPU time of the optimized program, proportion of time spent in COBOL, and the percentage

of the CPU reduction from using ABO

The JCL for the next top CPU consuming COBOL batch application can then be passed to the Program
Analyzer and Optimizer component of the ABO Assistant to repeat the above process.

Note: Each target COBOL application must be re-runnable sequentially without cleanup or other steps
needed that are not already present in the original JCL. As the application will be run twice, it is highly
recommended that the Program Analyzer and Optimizer component of the ABO Assistant only be used on
a test or development system. For more information on this and other restrictions, see “Limitations and
requirements on Program Analyzer and Optimizer” on page 60.

Components of the ABO Assistant
In addition to the beta version of ABO itself, the ABO Assistant beta is comprised of two components:

• SMF Analyzer
• Program Analyzer and Optimizer

ABO Assistant – SMF Analyzer
The SMF Analyzer component of the ABO Assistant consists of 3 files:

• BOZSMFJ - Sample JCL for invoking the ABO Assistant’s SMF Analyzer programs. There are 4 input
parameters that must be specified in this JCL:

– SMFDUMP - Data set name of SMF DUMP to analyze containing SMF 30(4) records
– ABO - Data set name of the ABO installation location (location of the BOZSMF program)
– EXE - Data set name where the BOZSMFR REXX program is located
– THRSHOLD - Minimum CPU time required for program to be included in the report

• BOZSMF - Program that is invoked by the sample job BOZSMFJ described above

© Copyright IBM Corp. 2015, 2021 55

• BOZSMFR - REXX program that is invoked by the sample job BOZSMFJ described above

Note: The SMFDUMP data must consist of SMF Type 30 subtype 4 records for the time interval you wish
to analyze. See “SMF DUMP generation” on page 62 for information on how to generate this SMF dump.

After setting the 4 input parameters in BOZSMFJ and submitting the JCL, the SMF Analyzer will produce a
report at userid.BOZSMF.OUTPUT detailing the top CPU consuming programs, sorted high to low based on
the CPU time.

Optionally, a list of data set locations where your COBOL run JCL files are located can be specified and the
SMF Analyzer tool will produce an additional report at userid.BOZSMF.OUTPUT.JCLLIST to also show the
specific JCL location for each program found in the SMF data.

These JCL files can be used as input to the second component of the ABO Assistant, described next, to
automatically optimize and produce a performance report on the CPU time savings from using ABO.

ABO Assistant – Program Analyzer and Optimizer
The Program Analyzer and Optimizer component of the ABO Assistant consists of 2 files:

• BOZPAJ - Sample JCL for invoking the ABO Assistant REXX program BOZPA. There are 6 input
parameters that must be specified in this JCL:

– JCLNAME - Name of the sequential file or PDS(E) member that contains the JCL to run the original
COBOL program

– PGMNAME - Name of the original COBOL program
– ABO - Data set name of the ABO installation location
– EXE - Data set name where the BOZPA REXX program is located
– OPTLOAD - New or existing data set name where the optimized modules will be stored or TEMP to

indicate a temporary data set should be used. TEMP is the default.
– DYNSCAN - Y | N. A setting of Y will cause the modules that make up the application to be scanned for

compilation details and no performance report will be produced. A setting of N is the default and will
cause the performance report to be generated.

• BOZPA - REXX program that is invoked by the sample job BOZPAJ described above.

After setting the 6 input parameters in BOZPAJ and submitting the JCL, the Program Analyzer and
Optimizer actions will depend on the DYNSCAN setting.

When DYNSCAN=N is in effect (the default setting), a performance report is produced at
userid.BOZPA.OUTPUT.pgmname. This report shows the time spent in the COBOL application and LE as
well as the actual performance improvements from using ABO."

When DYNSCAN=Y is in effect, a report containing compilation details for all programs that dynamically
make up the application is produced in the job #2 OPTLOG. This report contains the module and CSECT
names, compilation dates, COBOL compiler versions or translator ID records and more for every module
that contributes to the applications CPU time.

The report contents are the same as those described in “The log file for scanning” on page 44, except
instead of statically scanning modules as with the ABO option SCAN=Y, the DYNSCAN=Y report provides
the more targeted information of only those modules/programs actually used by the application.

The report produced by DYNSCAN=Y allows deep insight into the dynamic make up of your COBOL
applications.

Notes:

1. When DYNSCAN=Y is in effect, no ABO optimization is performed, and no performance report is
produced at userid.BOZPA.OUTPUT.pgmname. The OPTLOAD parameter is also ignored in this case.

2. ABO is automatically and transparently used by the Program Analyzer and Optimizer, so no user action
is required to directly invoke ABO.

56 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

How to use the ABO Assistant
This section contains instructions on how to use the two components of the ABO Assistant.

How to use the SMF Analyzer
Four parameters must be set before submitting BOZSMFJ to run the SMF Analyzer tool:

// SET SMFDUMP=hlq.SMF30.DUMP <- SMF TYPE 30 subtype 4 dump location
// SET ABO=hlq.abo.loadlib <- Program BOZSMF location
// SET EXE=hlq.bozpa.location <- REXX program BOZSMFR location
// SET THRSHOLD=0 <- Minimum CPU Time threshold value

Optionally, an additional report can be produced to display the JCL locations to run each program found in
the SMF data. To enable this function, provide a list of existing JCL library locations at the PGMHOME in-
stream JCLLIST DD file at the bottom of BOZSMFJ:

//PGMHOME EXEC PGM=IKJEFT01,REGION=0M,PARM='BOZSMFR 2'
...
//JCLLIST DD *
example.jcl.library1 <- Put your COBOL related JCL library here
example.jcl.library2 <- Put your COBOL related JCL library here
example.jcl.library3 <- Put your COBOL related JCL library here

When BOZSMFJ is submitted with these settings, the following actions take place:

The ABO Assistant REXX program BOZSMFR in hlq.bozpa.location and program BOZSMF in
hlq.abo.loadlib will analyze your SMF data in hlq.SMF30.DUMP and produce a report at
userid.BOZSMF.OUTPUT detailing the top CPU consuming programs, sorted high to low based on the
CPU time.

If the JCLLIST function is enabled, then the provided JCL data set locations in the final BOZSMFJ step
PGMHOME is used to find the JCL locations to run each program. These JCL file locations are displayed
next to the sorted CPU data in an additional report at userid.BOZSMF.OUTPUT.JCLLIST.

If the JCLLIST function is not enabled or not successful, either by leaving the example data set locations
unchanged or specifying an empty JCLLIST in-stream file, or if one or more data sets specified cannot be
found, then the PGMHOME step completes with a return code of 4 and the additional report is not
generated.

In most cases, only the final reports at BOZSMF.OUTPUT or BOZSMF.OUTPUT.JCLLIST will be required,
but two earlier intermediate reports are also generated:

• userid.BOZSMF.OUTTEMP1 - All the performance related fields for all the programs from the SMF30
records

• userid.BOZSMF.OUTTEMP2 - All the performance related fields for non-excluded programs from the
SMF30 records. The excluded programs are the records generated by STC/TSU and those in the default
exclusion list. BOZSMFJ contains this default exclusion list.

See also “Example report from the SMF Analyzer” on page 58 for the example reports.

How to use the Program Analyzer and Optimizer
Six parameters must be set before submitting BOZPAJ to run the Program Analyzer and Optimizer
component of the ABO Assistant:

// SET JCLNAME=hlq.JCL.LIB(COBJCL) <- original COBOL program JCL location
// SET PGMNAME=COBPGM <- COBOL program name
// SET ABO=hlq.abo.loadlib <- ABO install location
// SET EXE=hlq.bozpa.location <- REXX program BOZPA location

Chapter 7. Using the ABO Assistant 57

// SET OPTLOAD=TEMP <- put data set name or TEMP
// SET DYNSCAN=N <- for dynamic scan set to Y

The JCLNAME parameter can be obtained from the SMF Analyzer final report that can provide the JCL
locations for the top CPU consuming programs.

When BOZPAJ is submitted with these settings, including DYNSCAN=N, the following actions take place:

The ABO Assistant REXX program BOZPA in hlq.bozpa.location will automatically profile the program
COBPGM in the original application JCL at hlq.JCL.LIB(COBJCL) and then optimize the ABO eligible
COBOL CSECTs using the ABO at hlq.abo.loadlib. The original and ABO optimized versions of the program
will each be run and the performance improvement from using ABO, along with other performance data,
will be generated in the ABO Assistant report. See “Example report from the Program Analyzer and
Optimizer” on page 59.

The ABO Assistant report is available at userid.BOZPA.OUTPUT.pgmname file. For example, if the TSO ID
of the user who submitted BOZPAJ is USER and PGMNAME=COBPGM, then the ABO Assistant report is
available at USER.BOZPA.OUTPUT.COBPGM file.

The OPTLOAD parameter specifies where the optimized modules will be stored. If left at the default value
of TEMP, then the ABO Assitant will use a dynamically allocated temporary data set for the optimized
modules. This temporary data set will be removed after the performance report is produced. If the
OPTLOAD parameter specifies an existing data set name then the optimized modules will be stored at this
location. If the OPTLOAD parameter specifies the name of a data set that does not exist, then this data set
will be dynamically allocated at hlq.OPTLOAD to contain the optimized modules. Specifying an existing or
new data set name for OPTLOAD allows you to retain the optimized modules after the Program Analyzer
and Optimizer completes to be used for further evaluation or deployment.

If DYNSCAN=Y is in effect, then a report detailing compilation information for the modules that
dynamically make up the application is produced in the job #2 OPTLOG file. In this case no performance
report is generated to userid.BOZPA.OUTPUT.pgmname and the OPTLOAD parameter is also ignored.

If there is a problem with the setting of a BOZPAJ parameter, an error message will be produced in the
SYSTSPRT file. See BOZPAJ Parameter Error Messages for a list of possible messages.

Note: Each target COBOL application must be re-runnable sequentially without cleanup or other steps
needed that are not already present in the original JCL. For more information on this and other restrictions
see “Limitations and requirements on Program Analyzer and Optimizer” on page 60.

Example reports
This section contains example reports produced by the two components of the ABO Assistant.

Example report from the SMF Analyzer
Below are example reports from the SMF Analyzer.

These reports provide a sorted list, from high to low CPU time, of the application jobs and programs for
the time range of SMF data that was collected.

This report enables you to quickly identify, at a high level, the applications consuming the most CPU time
on your system. These applications would be the best candidates for ABO optimization.

Due to limitations in the SMF data, only the main or driver program name is listed in this report so the
second component of the ABO Assistant, the Program Analyzer and Optimizer, should be used to identify
and optimize all the programs that make up each application.

The following is an example report of userid.BOZSMF.OUTPUT:

 IBM Automatic Binary Optimizer for z/OS Assistant
 SMF Analyzer, 28 Jan 2021 12:35:13
 System: ZTFP z/OS 2.3
 Range: JAN 21, 2021 01:00:01 - JAN 21, 2021 09:00:02
==

58 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

 Top CPU consuming programs
 * Listed by job step location
 * Sorted high to low by CPU Time

 JobName ProgName StepName CPU sssss.hh
 G00960D ATMCF000 DMS 8433.67
 G73745C IKJEFT01 BATCHTSO 7791.43
 G77121F TUYS200B SB330 6781.52
 G52682H IKJEFT01 SB332 3384.34
 ...
 G46530T PK8141SQ SB501 62.98
 G21044N UT8080HG SB423 61.33
 Total CPU: 83145.23

The following is an example report of userid.BOZSMF.OUTPUT.JCLLIST:

 IBM Automatic Binary Optimizer for z/OS Assistant
 SMF Analyzer, 28 Jan 2021 12:35:13
 System: ZTFP z/OS 2.3
 Range: JAN 21, 2021 01:00:01 - JAN 21, 2021 09:00:02
==
 Top CPU consuming programs
 * Listed by job step location
 * Sorted high to low by CPU Time

 JobName ProgName StepName CPU sssss.hh Location
 G00960D ATMCF000 DMS 8433.67 hlq1.PROD.LOAD1.JCL(TYDFD1)
 G73745C IKJEFT01 BATCHTSO 7791.43 hlq1.PROD.LOAD2.JCL(GSDFD2)
 G77121F TUYS200B SB330 6781.52 hlq2.TEST.LOAD.JCL(RDTR5)
 G52682H IKJEFT01 SB332 3384.34 hlq2.TEST.LOAD.JCL(RDTR6)
 ...
 G46530T PK8141SQ SB501 62.98 hlq1.PROD.LOAD1.JCL(UBBJ4)
 G21044N UT8080HG SB423 61.33 NOT FOUND
 Total CPU: 83145.23

In these examples, program ATMCF000 is identified as the top CPU consuming program. The JCL to run
this application (hlq1.PROD.LOAD1.JCL(TYDFD1)) is then the input for the example Program Analyzer and
Optimizer report shown next to determine the actual CPU reduction from ABO.

Example report from the Program Analyzer and Optimizer
Below is an example report from the Program Analyzer and Optimizer.

The report indicates the original CPU time when running the application, the CPU time after automatically
optimizing the top CPU consuming CSECTs with ABO, and finally the actual CPU reduction from using ABO
on this application.

===
 IBM Automatic Binary Optimizer for z/OS Assistant
 Program Analyzer and Optimizer, 26 Feb 2021 14:06:04

 Program: ATMCF000
 z/OS version: 02 . 03
 LPAR name: SYSZEF1
 IBM Z system: z14 (3906-7F4)

======= ORIGINAL RUN DETAILS ==

 Original CPU Time for ATMCF000: 8.90 seconds

 CPU consuming COBOL CSECTs:

 Module CSECT Product Status %TOTAL DSNAME

 ATMSTAC0 ATMSTAC0 Enterprise COBOL V4 * 35.95% USER.ATM06.COBV42.OPTFULL.LOAD
 ATMSTCU0 ATMSTCU0 Enterprise COBOL V4 * 15.44% USER.ATM06.COBV42.OPTFULL.LOAD
 IGZCPAC IGZCXDI COBOL LE 14.56% SYS2.CEEZ240.SCEERUN
 IGZCFCC COBOL LE 5.37%
 IGZCONVX COBOL LE 5.10%
 IGZCONV COBOL LE 2.05%
 ATMCF000 ATMCF000 Enterprise COBOL V4 * 1.52% USER.ATM06.COBV42.OPTFULL.LOAD
 ATMM0000 ATMM0000 Enterprise COBOL V4 - 1.42% USER.ATM06.COBV42.OPTFULL.LOAD
 ATMVITF0 ATMVITF0 Enterprise COBOL V5 0.37% USER.ATM06.COBV42.OPTFULL.LOAD
 ATMSTBR0 ATMSTBR0 Enterprise COBOL V4 * 0.31% USER.ATM06.COBV42.OPTFULL.LOAD
 ATMURND0 ATMURND0 Enterprise COBOL V6 0.07% USER.ATM06.COBV42.OPTFULL.LOAD
 ATMCFEE0 ATMCFEE0 Enterprise COBOL V4 * 0.05% USER.ATM06.COBV42.OPTFULL.LOAD

Chapter 7. Using the ABO Assistant 59

 ATMOFEE0 Enterprise COBOL V4 * 0.03%
 ATMRTALG Enterprise COBOL V4 * 0.00%
 ATMRTCLG ATMRTCLG Enterprise COBOL V4 * 0.00% USER.ATM06.COBV42.OPTFULL.LOAD

 Program ATMCF000 spends 82.24% of time in COBOL application & LE

======= OPTIMIZED RUN DETAILS ==

 Set ARCH=12 for z14

 * Optimize 8 COBOL CSECTs from 6 modules using ABO, store the modules in
USER.BOZPA.TEST.OPTLOAD

 ABO optimized CPU Time for ATMCF000: 03.84 seconds

======= RESULTS ===

 CPU time reduction using ABO: 56.85%

==

Note: The character in column 4 (following the language or product name) indicates the CSECT’s eligibility
for optimization by ABO:

• An asterisk `*` indicates the CSECT is eligible for ABO optimization
• A space ` ` indicates the CSECT is not eligible for ABO optimization, because for example, it is part of

Language Environment (LE), or is from a language not supported by ABO (e.g. PL/I) or that it is compiled
by a version of the COBOL compiler not currently eligible for ABO optimization (e.g. Enterprise COBOL
V5 or V6)

• A dash `-` indicates the CSECT has already been optimized by ABO so is not eligible to be optimized
again. Optimization by ABO can only happen from original CSECT.

BOZPAJ parameter error messages
Any errors in the BOZPAJ parameters will cause a BOZPAJ job failure with return code 8 and the
SYSTSPRT file will have one of the following messages:

*** Error: no JOB card provided in jclname
*** Error: no EXEC card provided in jclname
*** Error: invalid data set jclname
*** Error: data set jclname could not be found
*** Error: data set ABO could not be found
*** Error: invalid OPTLOAD optload
*** Error: invalid DYNSCAN dynscan
*** Error: allocating data set optload

Limitations and requirements on Program Analyzer and Optimizer
The Program Analyzer and Optimizer component of the ABO Assistant beta has some limitations and
requirements on the types and format of JCL it can process and the application environments where it can
operate.

Unless otherwise indicated, all the error messages are placed in the SYSTSPRT file from job #2.

1. The ABO Assistant can be used on LE enabled batch applications. The ABO Assistant does not work for
CICS or IMS applications. The ABO Assistant will not work if your z/OS operating system is running on
z/VM.

2. The target COBOL application must be re-runnable sequentially without cleanup or other steps needed
that are not already present in the original JCL. This is required as two runs of the application (original
and ABO optimized) are required to form the performance comparison. The errors generated in case of
some resource missing or a skipped cleanup step will vary depending on the missing action during the
second run of the application.

User response:

Modify the original JCL so all required cleanup or other steps are included to enable a sequential rerun
of the application

60 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

3. The COBOL program specified by the pgmname variable, as well as, any other COBOL program
implicitly called must be in the STEPLIB data set concatenation for it to be available for ABO
optimization.

If a module is not found in the STEPLIB, but still found in the LINKLIST or any other system library,
then the ABO Assistant will continue, but the corresponding module will not be optimized, and will be
marked as ‘not found in STEPLIB’ in the ABO Assistant report.

If the module is not found at all then ABEND 806 will be generated.

User response:

Add the missing data set(s) containing all modules required for the application to the STEPLIB
concatenation

4. As the ABO Assistant uses ABO it has the same system and hardware requirements as ABO does. If
the system used for any of generated jobs #1 or #2 is not supported, the BOZPAJ job will fail with
return code 8 and one of the following error messages will be generated.

Messages:

z/OS version: xx.xx is not a supported z/OS version to run ABO.

IBM z server: (xxxx) is not a supported hardware level to run ABO optimized modules.

User Response:

Ensure the system being used for the ABO Assistant meets the minimum requirements for ABO.

Note: The ABO Assistant automatically detects the IBM Z system where it is being run and sets the
ARCH level for ABO optimization to match the IBM Z system.

5. The target COBOL program name provided in the original JCL with ‘PGM=’ parameter cannot be a
variable. For example, the following are not allowed:

//STEP1 EXEC PGM=&pgm

or

PGM=%pgm

If variable name is used in the ‘PGM=’ field, or there is no step with the specified COBOL program
name pgmname found in the original JCL, the BOZPAJ job fails with return code 8 and an error
message is generated.

This error can occur if your JCL contains external JCL procedures as expansion is not supported. To
work around this the JCL procedures can be copied into the JCL.

Message:

*** Error: no step with PGM=pgmname located in jclname

User response:

Correct the JCL so a variable is not used for the program name. If your JCL contains external JCL
procedures, then copy the JCL procedures into your JCL.

6. If the original job JCL has system affinity or routing directives, such as CLASS, SYSAFF, ROUTE,
SCHENV, these may cause the job to be routed for execution on a system that satisfies the
requirements.

Depending on routing directives there may be a different system selected each time. This may cause
the automatically generated jobs #1 and #2 to be run on different systems

In case the IBM mainframe level of the jobs #1 and #2 runs are not the same, then the job #2
completion code will be 4 and a warning message will be generated at the end of the ABO Assistant
report.

Message:

Chapter 7. Using the ABO Assistant 61

*** Warning: the system ARCH level for POC JOB # 1 and # 2 is nn nn
respectively

The evaluation results may not be accurate.

User response:

Adjust the original JCL routing directives to ensure the same single system selection for each job
7. The TSO user invoking the ABO Assistant must be authorized to use the TSO SUBMIT command. If not,

then the tool’s use of this command will fail, and the BOZPAJ job will fail with return code 8 and an
error message generated.

Message:

*** Error: TSO SUBMIT command failure

User response:

Obtain TSO user authorization for using TSO SUBMIT
8. The STEPLIB JCL card must be present in the target step (step with EXEC PGM=pgmname) of the

original JCL. If no STEPLIB card is found, then the BOZPAJ job fails with return code 8 and an error
message is generated.

Message:

*** Error: no STEPLIB provided for stepname step in jclname

User response:

Add the required STEPLIB card to the JCL

Additional usage notes
The following are some additional usage notes:

• You can use the SDSF SJ command in front of jobs #1 and #2 to see and possibly reuse the JCL
internally generated for those jobs by the ABO Assistant.

• The complete RTI profiles generated by jobs #1 and #2 for your original and ABO optimized COBOL
programs can be found in the following locations for program pgmname:

– Original RTI Profile: userid.SYSPROFD.ORIG(pgmname)
– ABO optimized RTI profile: userid.SYSPROFD.OPTIM(pgmname)

SMF DUMP generation
The SMF dump used as the input to the SMF Analyzer component of the ABO Assistant can be produced
by either the IFASMFDP or IFASMFDL program depending on your system installation and your system
programmer recommendations.

Sample 1:

 //IFASMFDP JOB accounting information
 //STEP EXEC PGM=IFASMFDP
 //INDD1 DD DSN=SYS1.MANB,DISP=SHR
 //OUTDD1 DD DSN=&SYSUID..SMFDUMP,DISP=(,CATLG,DELETE),UNIT=SYSDA,
 // SPACE=(CYL,(10,10),RLSE),DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=0)
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 INDD(INDD1,OPTIONS(DUMP))
 OUTDD(OUTDD1,TYPE(30(4)))
 DATE(2020151,2020151)
 START(1200)
 END(1600)
 /*

62 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

The above job produces &SYSUID..SMFDUMP that contains the SMF 30 subtype 4 records collected by
system in the data set SYS1.MANB on day 151 of year 2020, from 12:00 to 16:00.

Note: Consult your system programmer to determine the correct data set name for the INDD1 statement.

Sample 2:

 //IFASMFDL JOB accounting information
 //STEP EXEC PGM=IFASMFDL
 //OUTDD1 DD DSN=&SYSUID..SMFDUMP,DISP=(,CATLG,DELETE),UNIT=SYSDA,
 // SPACE=(CYL,(10,10),RLSE),DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=0)
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 LSNAME(IFASMF.SMFTO30.SYSA,OPTIONS(DUMP))
 OUTDD(OUTDD1,TYPE(30(4)))
 DATE(2020151,2020151)
 START(1200)
 END(1600)
 /*

The above job produces &SYSUID..SMFDUMP that contains the SMF 30 subtype 4 records collected by
system in the log stream IFASMF.SMFTO30.SYSA on day 151 of year 2020 from 12:00 to 16:00.

Note: Consult your system programmer to determine the right log stream name for the LSNAME
statement. In the above sample, the appropriate log stream name on LPAR SYSA is
IFASMF.SMFTO30.SYSA.

Chapter 7. Using the ABO Assistant 63

64 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 8. Managing optimization and optimized
module deployment process

Taking an iterative and staged approach when using ABO

An iterative and staged approach to using ABO is a recommended approach to balance the cost of the
optimization process to the benefits from running the optimized programs generated by ABO.

For example, first optimize the modules containing the top x% contributors to CPU time. Measure the
impact (for example, the reduction in CPU time) using these ABO generated modules, and then repeat for
the next top x% CPU contributors until your performance goals are met.

Included with ABO is the Chapter 7, “Using the ABO Assistant,” on page 55. The ABO Assistant automates
all the individual steps required to efficiently optimize your COBOL batch application using ABO and to
clearly report on the CPU time savings from using ABO. The ABO Assistant can be used when evaluating
ABO to determine potential CPU savings and also to prioritize deployment of applications and determine
the top CPU consuming modules and CSECTs.

There are also stand-alone performance measurement and reporting tools that can be used, such as IBM
Application Performance Analyzer (APA) for z/OS, to help determine the top CPU contributors.
Alternatively, the RTI Profiler that comes with ABO can be used for COBOL batch applications to help
determine which modules and CSECTs are most frequently executed when the application is running.

Characteristics of programs that benefit most from ABO
Some compiled programs will benefit more from ABO than others. Knowing some key characteristics of
these programs can also help in staging use of ABO on your compiled COBOL programs.

ABO can only improve performance of the original compiler generated code and some select Language
Environment (LE) routines, but ABO does not have the means to improve performance when time is spent
in other subsystems such as CICS, Db2, and IMS.

Key characteristics of programs that might benefit more from optimization with ABO are:

• A significant portion of the application’s execution time is spent in the COBOL code instead of in other
subsystems such as CICS, Db2, and IMS.

• The COBOL code is performing a significant amount of computations. For example, a program where the
COBOL code itself is doing the actual, real work, and is not simply acting as a "driver" program for other
programs or subsystems.

– At the source level, some statements most likely to benefit include, but are not limited to: COMPUTE,
IF, MOVE, ADD, SUBTRACT, MULTIPLY, DIVIDE, and REMAINDER.

– In addition, some select Language Environment (LE) routines can also be optimized by ABO. These
routines perform a variety of conversion, move, and arithmetic operations and include IGZCSH2,
IGZCFPC, IGZCONV, IGZCVMO, IGZCXPR, IGZCXMU, and IGZCXDI. ABO optimizes these routines by
more efficiently performing the work of these routines directly in the optimized code or by calling a
more efficient LE routine.

Note: Looking at the COBOL source alone does not take into account where the time in the
application is actually spent, so this should be done in combination with a performance report from
an analysis tool such as APA.

• Most COBOL modules within the application are eligible for optimization by ABO. This means that the
modules were complied with an eligible COBOL compiler and contain language features that are
supported by ABO.

© Copyright IBM Corp. 2015, 2021 65

Optimization and deployment usage scenarios
This section contains three typical usage scenarios for IBM Automatic Binary Optimizer for z/OS. These
scenarios describe possible approaches to using the IBM Automatic Binary Optimizer for z/OS to improve
the performance of already compiled IBM COBOL programs. Each scenario provides step-by-step
instructions to enable you to optimize your compiled IBM COBOL programs.

Scenario 1: Optimization process with static deployment
In this usage scenario, specify input modules to the optimizer in your JCL using BOPT directives, and for
deployment, update all existing JCL that identifies data sets containing the original modules.

Procedure
To perform the optimization with static deployment, complete the following steps:
1. Create new data sets. For example, the following data sets are created for this scenario where HLQ is

the high-level qualifier that you define.

• HLQ.OUT.LOAD.Z14. This data set will be populated with optimized binaries targeting the z14
machine.

• HLQ.OUT.LOAD.Z15. This data set will be populated with optimized binaries targeting the z15
machine.

2. Run ABO to populate the new data sets. To run the optimizer, create new JCL. In the in-stream line
that starts with SYSIN, use the BOPT optimizer directive. Select your compiled COBOL programs to
optimize with the IN option. For example, the following JCL instructs the optimizer to optimize all the
members with names beginning with M from HLQ.IN.LOAD. The optimized binaries targeting z14 and
z15 are placed in HLQ.OUT.LOAD.Z14 and HLQ.OUT.LOAD.Z15 respectively.

...
//SYSIN DD *
 BOPT IN=HLQ.IN.LOAD(M*) OUT=HLQ.OUT.LOAD.Z14 LIST=HLQ.OUT.LIST.Z14 ARCH=12
 BOPT IN=HLQ.IN.LOAD(M*) OUT=HLQ.OUT.LOAD.Z15 LIST=HLQ.OUT.LIST.Z15 ARCH=13

The example is intended to reflect what the user should specify in the SYSIN file. For basic JCL
configuration, see Appendix A, “JCL sample,” on page 75. For more sample JCL that you can use in
the static deployment scenario, see “Specifying optimization with BOPT” on page 31.

3. To run the optimized programs, modify the JCL that is used to run the original programs. That JCL
identifies data sets that contain the original modules. In the STEPLIB setting, you must place the data
sets of the optimized modules ahead of the data sets of the original modules for each targeted
architecture. The following snippets show the modified parts in JCL that points to the optimized and
original program binaries.

Here's the modified part in the JCL that is used to run the original program on z14:

//STEPLIB DD DSN=HLQ.OUT.LOAD.Z14,DISP=SHR
// DD DSN=HLQ.IN.LOAD,DISP=SHR
...

Here's the modified part in the JCL that is used to run the original program on z15:

//STEPLIB DD DSN=HLQ.OUT.LOAD.Z15,DISP=SHR
// DD DSN=HLQ.IN.LOAD,DISP=SHR
...

Scenario 2: Optimization process with dynamic deployment
In this usage scenario, map input to output modules in IEFOPZxx SYS1.PARMLIB's members and then use
the IEFOPZ optimizer directive to specify optimization of input to output modules. After the binary

66 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

optimization completes, run the optimized programs with no changes to the existing JCL that was used to
run the original programs.

About this task
IEFOPZxx contains statements that define the data set optimization configuration which provide a list of
pairings of an old COBOL library and the intended new libraries (one for each desired architecture level)
and specifies which members are to be processed (optimized). For more information, see z/OS MVS
Initialization and Tuning Reference.

Procedure
To perform the binary optimization with dynamic deployment, complete the following steps:
1. Create new data sets. For example, the following data sets are created for this scenario where HLQ is

the high-level qualifier that you define.

• HLQ.OUT.LOAD.Z14. This data set will be populated with optimized binaries targeting the z14
machine.

• HLQ.OUT.LOAD.Z15. This data set will be populated with optimized binaries targeting the z15
machine.

2. Define the IEFOPZ configuration.

a. Create an IEFOPZxx member.
b. For each old data set that contains the compiled module that you want to optimize, define an

OLD/NEW pair in the IEFOPZxx member. Mark the OLD/NEW pair as INACTIVE so that the system
does not do any OLDNEW processing unexpectedly. See the following example:

MAXARCH(13)
CHECKALL
OWNER(IBM) MINARCH(12)
OLDNEW(
 OWNER(IBM)
 OLD (DSN(HLQ.IN.LOAD))
 NEW (DSN(HLQ.OUT.LOAD.Z14) ARCH(12))
 NEW (DSN(HLQ.OUT.LOAD.Z15) ARCH(13))
 INCLUDEMEMBERS(M*) //Identifies to process all members beginning with M
 INACTIVE
)

Note: The OLD/NEW pairs can be defined in one or multiple IEFOPZxx members.
3. To activate the IEFOPZ configuration, use the following z/OS MVS System command:

SET IEFOPZ=(x1,...,xn)

where x1,..., xn are the suffixes xx for the IEFOPZxx members. If in the previous step, you only create
one member, the command is as follows:

SET IEFOPZ=x1

Note: The SET command modification stays through the current IPL session only. Therefore, it is
usually used for the new configuration quick test, or to override some permanent definitions during the
current IPL session. For permanent configuration definitions, see step 5.

4. Run IBM Automatic Binary Optimizer for z/OS to populate the new data sets.
To run the optimizer, write JCL as follows. In the in-stream data that starts with SYSIN, use the IEFOPZ
directive.

...
//SYSIN DD *
 IEFOPZ SEL_ARCH=12 LIST=HLQ.BOZOPT.ARCH12.LIST
 IEFOPZ SEL_ARCH=13 LIST=HLQ.BOZOPT.ARCH13.LIST

Chapter 8. Managing optimization and optimized module deployment process 67

The example is intended to reflect what the user should specify in the SYSIN file. For basic JCL
configuration, see Appendix A, “JCL sample,” on page 75. For more sample JCL that you can use in
the dynamic deployment scenario, see “Specifying optimization with IEFOPZ” on page 34.

5. Update your IEASYSxx SYS1.PARMLIB member with the IEFOPZ system parameter so that subsequent
IPLs will properly activate the desired IEFOPZ configuration. For example, to have the IEFOPZ
configuration specified in member IEFOPZ99 automatically activated with each subsequent IPL, put
the IEFOPZ=99 statement into your IEASYSxx member. However, the SET command described in step
3, if issued for example as follows: SET IEFOPZ=99, will activate the desired IEFOPZ99 member for
the current IPL session only.

6. Redefine the OLD/NEW pairs as ACTIVE. If you want OLD/NEW processing to be done for any
DDNAMEs other than JOBLIB and STEPLIB, define those within an IEFOPZxx parmlib member using
the DDNAME statement. Then activate that updated IEFOPZ configuration.

7. Run the optimized programs by using the existing JCL that was used to run the original programs.

Related reference
“Related publications” on page 103

Scenario 3: Optimization process using a hybrid approach
In the hybrid approach, specify the input binaries to optimize explicitly in your JCL as what you do in
Scenario 1, but combine with dynamic deployment demonstrated in Scenario 2. With dynamic
deployment, run the optimized modules without changing the existing JCL.

Procedure
To perform the binary optimization using a hybrid approach, complete the following steps:
1. Create new data sets. For example, the following data sets are created for this scenario where HLQ is

the high-level qualifier that you define.

• HLQ.OUT.LOAD.Z14. This data set will be populated with optimized binaries targeting the z14
machine.

• HLQ.OUT.LOAD.Z15. This data set will be populated with optimized binaries targeting the z15
machine.

2. Run IBM Automatic Binary Optimizer for z/OS to populate the new data sets.
To run the optimizer, create new JCL. In the in-stream data that starts with SYSIN, use the BOPT
optimizer directive to select compiled COBOL modules to optimize. For example, the following JCL
instructs the optimizer to optimize all the members that begin with the letter M from HLQ.IN.LOAD. The
optimized binaries targeting z14 and z15 are placed in HLQ.OUT.LOAD.Z14 and HLQ.OUT.LOAD.Z15
respectively.

...
//SYSIN DD *
 BOPT IN=HLQ.IN.LOAD(M*) OUT=HLQ.OUT.LOAD.Z14 ARCH=12
 BOPT IN=HLQ.IN.LOAD(M*) OUT=HLQ.OUT.LOAD.Z15 ARCH=13

The example is intended to reflect what the user should specify in the SYSIN file. For basic JCL
configuration, see Appendix A, “JCL sample,” on page 75. For more sample JCL that you can use in
the hybrid scenario, see “Specifying optimization with BOPT” on page 31.

3. Define the IEFOPZ configuration.

a. Create an IEFOPZxx member.
b. For each old data set that contains the compiled module that you want to optimize, define an

OLD/NEW pair in the IEFOPZxx member. Mark the OLD/NEW pair as ACTIVE. See the following
example.

OLDNEW (
 OLD(DSNAME (HLQ.IN.LOAD))
 NEW(DSNAME (HLQ.OUT.LOAD.Z14) ARCH(12))
 NEW(DSNAME (HLQ.OUT.LOAD.Z15) ARCH(13))

68 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

 INCLUDEMEMBERS(M*) //Identifies to process all members beginning with M
 ACTIVE)

Note: The OLD/NEW pairs can be defined in one or multiple IEFOPZxx members.
c. If you want OLDNEW processing to be done for any DDNAMEs other than JOBLIB and STEPLIB,

define those within an IEFOPZxx parmlib member using the DDNAME statement. Then activate that
updated IEFOPZ configuration by using the following command:

SET IEFOPZ=(x1,...,xn)

where x1,..., xn are the suffixes xx for the IEFOPZxx members. If in the preceding step, you create
only a single member, the command is as follows:

SET IEFOPZ=x1

4. Run the optimized programs by using the existing JCL that was used to run the original programs.

Related reference
“Related publications” on page 103

Testing information
The optimized modules that ABO produces will run faster but will have the same behavior, except from
some isolated error message and abend code differences, as the original COBOL modules. ABO is able do
this because it processes the binary code within the COBOL module so it is able to ensure the low level
logic of the program remains the same. This means that users of ABO do not have to perform full
functional verification testing of the ABO optimized modules. Some limited testing is recommended to
ensure basic functioning of the applications using the ABO optimized modules prior to deploying ABO
optimized modules into a production environment.

Performance testing is best done in a controlled environment with the same input data used with the
original application and with the application containing ABO optimized modules. Using a machine or LPAR
that has as few as possible other applications running for performance testing will allow for stable and
reproducible performance results. Comparing the CPU time between the original application and
optimized application is the best way to see performance gains.

Chapter 8. Managing optimization and optimized module deployment process 69

70 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 9. Resolving problems with optimization and
optimized module deployment

Resolving problems that occur during optimization time
The return code that ABO passes to z/OS is an indicator of whether a problem was encountered during
optimization. A return code value of zero means that optimization was successful and no problems were
encountered. A return code value other than zero, indicates something unexpected occurred or a problem
was encountered. For more information on return codes, see Appendix B, “Return codes,” on page 77.

ABO produces output files that can be used to diagnose problems.

The following files can be helpful in diagnosing problems encountered during the optimization of COBOL
programs:

• The log file gives a summary of what has been optimized or scanned, and error messages if applicable.
See Messages for more information. The log file is the first place you should examine if problems are
detected during the optimization process.

• The file specified by the OPTERR DD are written to in exceptional circumstances. If the OPTERR DD is
not specified, those messages are written to the JOBLOG.

• The file specified by the CEEDUMP DD are written to in circumstances such as a program exception
when running ABO. The CEEDUMP file is produced by Language Environment (LE) and includes
information such as a traceback of procedures that were executing at the time of the abend.

• The JOBLOG includes additional diagnostic messages that complement error messages that were
written elsewhere or the JOBLOG can be a default location for errors encountered in exceptional
circumstances.

Resolving problems encountered during execution

Common execution error solutions
ABO optimized modules might fail with a U4038 abend if the "Language Environment Automatic Binary
Optimizer Runtime Engine" PTF installed is not the latest PTF available. In this case, the module will
output one of the following messages:

IGZ0153S Program BOZSRC1 was compiled with a level of the compiler that requires service to be
installed on Language Environment.
IGZ0355S Program BOZSRC1 was optimized with a level of the Automatic Binary Optimizer that
requires service to be installed on Language Environment.

PTFs on z/OS 2.2 and 2.3 will cause the first message to be issued, and PTFs on z/OS 2.4 will cause the
second message to be issued. To resolve this problem, the latest "Language Environment Automatic
Binary Optimizer Runtime Engine" PTF listed in the Program Directory should be installed. The latest
information about the ABO PTFs can also be found on the fix list and new features page.

An 0C1 abend occurs if you attempt to run the ABO generated modules on a system that is not supported
by ABO. See “Target hardware levels” on page 4 for the supported systems.

Execution error diagnosis
The problem determination tools provided by IBM in the Application Delivery Foundation for z/OS can be
used to determine the source of execution time problems in applications that contain ABO optimized
modules. If the problem determination tools are not available, the listing transform produced by ABO can
help diagnose the execution time problems.

© Copyright IBM Corp. 2015, 2021 71

https://www-01.ibm.com/support/docview.wss?uid=swg27047229

If diagnoses determine that an ABO optimized module causes the execution time problem, revert to the
original COBOL module and contact IBM service to report the problem. To learn about the information
that needs to be collected to report an ABO problem to IBM, see ABO Mustgather page.

Changes in COBOL module size after optimization

The size of an optimized module is typically larger than the original module due to the types of
optimizations ABO does to improve performance.

Here are some common reasons for the module size increase:

• Use of higher ARCH instructions that are usually 6 bytes versus 4 or 2 bytes in length for many lower
ARCH instructions. For example:

– Using Decimal Floating Point (DFP) for packed/zoned decimal arithmetic to improve performance
– Replacing "base locator" pointers in the original module with more efficient but larger long

displacement instructions
– Using more than one move immediate instruction instead of one in memory move

• A number of optimizations in ABO generate more code but shorter path length and better performance.
For example:

– More efficient handling of numeric edited variables
– Unrolling long move and compare operations instead of using shorter but much slower instructions
– Conditionally correcting decimal precision for binary data

• The inlining of the behavior of various runtime library routines results in more code in the optimized
module but much faster performance in many cases.

So for these and similar reasons the optimized modules produced by ABO are often larger than the
original modules and require more on disk storage. However, the amount of memory used by the
optimized program itself when running is the same as that used by the original module. A slightly higher
EXCP count will sometimes be observed when running the optimized program but this is only due to the
few extra I/O operations required to load the larger module.

Note that an optimized module will keep its size unchanged if the optimized code happens to be smaller
than the original code.

Error message and abend code differences

The optimized modules generated by ABO are in almost every case functionally equivalent to the
corresponding original modules. However, in some rare cases an ABO generated module will produce
different Language Environment (LE) runtime messages or different CICS abend codes than the original
module.

This can happen when division on large data items and other complex operations are inlined or optimized
in the generated code by ABO for more efficient processing, instead of being handled by an LE library
routine or inefficient machine instructions.

In a non-CICS application, an ABO generated module:

• may produce a fixed-point divide exception (CEE3209S) message in places where the original module
produced a decimal-divide exception (CEE3211S) or IGZ0061S message.

• may produce a decimal-divide exception (CEE3211S) in places where the original module produced a
IGZ0061S message

72 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://www-01.ibm.com/support/docview.wss?uid=swg22006552

For reference the full LE runtime message text for these differing exceptions is given below.

CEE3211S The system detected a decimal-divide exception (System Completion Code=0CB).
IGZ0061S Division by zero occurred in program 'program-name' at displacement 'displacement'.
CEE3209S The system detected a fixed-point divide exception (System Completion Code=0C9).

For a CICS application the abend code returned by "CICS ASSIGN ABCODE" can change from '1061' from
the original module to 'ASRA' from the ABO generated module.

Application Delivery Foundation for z/OS
You can use Application Delivery Foundation for z/OS (ADFz) on ABO generated modules.

Find out more about Application Delivery Foundation for z/OS at https://www.ibm.com/ca-en/
marketplace/app-delivery-foundation-on-zsystems.

The following Application Delivery Foundation for z/OS family of problem determination tools can be used
on ABO generated COBOL modules:

• Developer for z/OS Enterprise Edition, which includes the IBM Debug for z/OS
• Fault Analyzer for z/OS (FA)
• Application Performance Analyzer for z/OS (APA)

In order to use these tools more effectively, you need to produce a LANGX side file for each optimized
program. DT, FA, and APA exploit the side file to provide a better tool experience. For example, source-
level debugging is provided with Debug for z/OS when a LANGX side file is provided. Without the side file,
source-level debugging is not possible.

Creating a LANGX side file
IPVLANGO is a new tool provided with IBM Problem Determination Tools Common Component for z/OS
V1.7, which is shared by the Application Delivery Foundation for z/OS tools. IPVLANGO combines the
SYSDEBUG data set or compiler listing or the LANGX side file of the original compiled program along with
the ABO listing transform to produce a new LANGX side file appropriate for the ABO generated module.
Use the new LANGX file when you use DT, FA, or APA on the ABO generated module.

Chapter 9. Resolving problems with optimization and optimized module deployment 73

https://www.ibm.com/ca-en/marketplace/app-delivery-foundation-on-zsystems
https://www.ibm.com/ca-en/marketplace/app-delivery-foundation-on-zsystems

74 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Appendix A. JCL sample

The following JCL sample is included in the IBM Automatic Binary Optimizer for z/OS installation package.

//BOZJCLE JOB <job parameters>
//***
//* Job Name: BOZJCLE *
//* *
//* Licensed Materials - Property of IBM *
//* 5697-AB2, 5655-EC6 *
//* Copyright IBM Corp. 2015, 2019 *
//* This file is part of product 5655-EC6, 5655-TY6, 5697-V61 *
//* 5697-AB2, 5697-TR2 *
//* *
//* US government users restricted rights *
//* use, duplication or disclosure restricted *
//* by GSA ADP schedule contract with IBM Corp. *
//* *
//***
//* Description: This JCL will optimize a COBOL program using *
//* IBM Automatic Binary Optimizer for z/OS *
//* V02.01.00 *
//***
// SET BOZJOBID = 'unique-identifier'
//*
//OPT EXEC PGM=BOZOPT,REGION=0M
//STEPLIB DD DSN=hlqboz.BOZ210.SBOZMOD1,DISP=SHR
//SYSLIB DD DSN=hlqboz.BOZ210.SBOZMOD1,DISP=SHR
// DD DSN=hlqcee.SCEELKED,DISP=SHR
// DD DSN=hlqcee.SCEELKEX,DISP=SHR
//OPTLOG DD DSN=hlq.BOZOUT.OPTLOG(&BOZJOBID),DISP=SHR
//OPTERR DD DSN=hlq.BOZOUT.OPTERR(&BOZJOBID),DISP=SHR
//CEEDUMP DD DSN=hlq.BOZOUT.CEEDUMP(&BOZJOBID),DISP=SHR
//SYSPRINT DD DSN=hlq.BOZOUT.LISTING,DISP=SHR
//SYSBIN DD DSN=input-load-library,DISP=SHR
//SYSBOUT DD DSN=output-load-library,DISP=SHR
//SYSIN DD *
 ARCH=arch-number
 BOPT IN=DD:SYSBIN(member-name) OUT=DD:SYSBOUT(member-name)

Note:

The SYSLIB DD in the above JCL might be required if the external call resolution is required only.

In the JCL example, hlqboz.BOZ210.SBOZMOD1 is the installation location chosen for the optimizer.

This example requires the following data sets to be allocated beforehand:

• hlq.BOZOUT.OPTLOG
• hlq.BOZOUT.OPTERR
• hlq.BOZOUT.LISTING
• hlq.BOZOUT.CEEDUMP

You can allocate these data sets with the recommended parameters in the following table:

Table 12. Recommended allocation parameters

Data sets Recommended allocation parameters

hlq.BOZOUT.OPTLOG
hlq.BOZOUT.OPTERR
hlq.BOZOUT.LISTING

Space units: CYLS
Primary quantity: 50
Secondary quantity: 50
Directory blocks: 10
Record format: VB1
Record length: 512
Block size: 27998
Data set name type: Library

© Copyright IBM Corp. 2015, 2021 75

Table 12. Recommended allocation parameters (continued)

Data sets Recommended allocation parameters

hlq.BOZOUT.CEEDUMP
Space units: CYLS
Primary quantity: 10
Secondary quantity: 10
Directory blocks: 10
Record format: FB
Record length: 133
Block size: 27930
Data set name type: Library

Notes:

1. hlq.BOZOUT.OPTLOG and hlq.BOZOUT.OPTERR must have a record format of VB to be opened
successfully. For hlq.BOZOUT.LISTING a record format of FB is also allowed, though information will
be truncated from the listing if the record length is too short. A record length of at least 133 is
recommended to ensure no truncation occurs.

&BOZJOBID is a unique identifier for this job chosen by the user. It is used as the member name in each
of the hlq.BOZOUT.OPTLOG, hlq.BOZOUT.OPTERR, and hlq.BOZOUT.CEEDUMP data sets. &BOZJOBID
must be a valid member name.

This JCL sample shows a definition of the SYSIN DD for optimizing a single module. For more examples,
see “JCL examples” on page 31 and “Optimization and deployment usage scenarios ” on page 66. For
descriptions of the ddnames used in the example, see “Required DD statements” on page 15.

76 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Appendix B. Return codes

IBM Automatic Binary Optimizer for z/OS emits messages to provide information, provide possible
warnings, or to report errors. Each message has a "Message return code" that is documented in Appendix
C, “Messages,” on page 79. On termination, ABO passes a return code value to z/OS that is the maximum
of the "Message return code" values of all the messages that were emitted. If no messages were emitted,
then a return code of 0 is returned to z/OS.

Table 13. IBM Automatic Binary Optimizer for z/OS return codes

Return code
(decimal)

Description

0 Successful completion of all processing. One or more informational messages may
have been emitted.

4 Successful completion but an unusual condition was detected. One or more warning
messages have been emitted.

12 An error was detected during the processing of a BOPT or IEFOPZ directive or global
option. One or more messages have been emitted.

• If the error occurs during syntax processing of a line of input, the rest of the line is
rejected and ABO proceeds to process the next line of input.

• If the error occurs while processing a BOPT or IEFOPZ directive, ABO proceeds to
process the next applicable module of the BOPT or IEFOPZ directive. If there are no
further input modules to process for the BOPT or IEFOPZ directive, processing of the
directive is terminated and ABO proceeds to the next line of input to process the
next directive or terminates if there are no more lines of input.

16 An unrecoverable error was detected. One or more messages are emitted and ABO
immediately terminates processing.

© Copyright IBM Corp. 2015, 2021 77

78 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Appendix C. Messages

The messages described in this section are written to the OPTLOG DD. In some exceptional cases, it may
not be possible to write to the OPTLOG DD in which case the message is written to write to the OPTERR
DD otherwise to the JOBLOG. Each message, listed below, has a "Message return code" that is used to
determine the return code returned to z/OS as described in Appendix B, “Return codes,” on page 77.

Each ABO message in this section has the form BOZnnnnX where BOZ indicates that the message is an
ABO message, nnnn is the message number, X is the severity indicator.

Severity indicators can be any of the following: I, W, E, S, or U.
I

Informational message (RC=0)
W

Warning message (RC=4)
E

Error message (RC=8)
S

Severe error message (RC=12)
U

Unrecoverable error message (RC=16)

BOZ1003U Program caught signal &1, exiting
with return code 16.

Explanation:
The optimizer was unable to continue because an
unexpected condition was encountered during
processing.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
Unexpected problems could happen due to an earlier
problem. Correct any problems reported in the log file
and retry the optimization process. If the problem
persists, consult IBM service for assistance.

Message return code

16

BOZ1031S An error occurred while
attempting to open "&1".

Explanation:
The optimizer was unable to open the file specified by
&1.

System action:
If the open failure was associated with one of the
required optimizer DDs, such as the SYSIN DD, the
optimizer immediately terminates with a return code
of 16. Otherwise, if the file is specified on a line in the
SYSIN input file (in a global option or BOPT or IEFOPZ

directive), processing of the line is terminated and the
optimizer proceeds to process the next line of the
SYSIN input file.

User response:
Ensure that the file name is correct, and that the file
has been allocated and with an appropriate record
format and with an appropriate record length.

Message return code

16 when attempting to open a mandatory DD,
otherwise 12.

BOZ1145U Insufficient memory in the
compiler to continue compilation.

Explanation
The optimizer was unable to continue due to memory
being low.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
Consider using the JCL MEMLIMIT or JCL REGION
parameters to increase the memory used by the
optimizer. For more information, see the z/OS MVS
Initialization and Tuning Reference and the z/OS MVS
Initialization and Tuning Guide.

Message return code

© Copyright IBM Corp. 2015, 2021 79

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en

16

BOZ1400S Directive is missing "&1" specifier.

Explanation
The optimizer encountered a BOPT or IEFOPZ directive
that requires an &1 specifier, but the specifier was
missing.

System action:
The optimizer discards the directive and proceeds to
process the next line in the SYSIN input file.

User response:
Correct the directive by adding an appropriate &1
specifier.

Message return code

12

BOZ1401S "&1" directive must be specified
at start of line.

Explanation
An option preceded the &1 directive on a line of the
SYSIN input file, or the line is missing the &1 directive.

System action:
The optimizer discards the directive and proceeds to
process the next line in the SYSIN input file.

User response:
Fix the line by specifying &1 directive at the start of the
line.

Message return code

12

BOZ1402S Invalid specifier in "&1".

Explanation
The &1 option of BOPT or IEFOPZ directive contained
an invalid specifier. For example, "H" is an invalid
specifier in the option: "SCAN=H".

System action:
The optimizer discards the directive with the invalid
specifier and proceeds to process the next line in the
SYSIN input file.

User response:
Change the specifier in the option to one that is valid.

Message return code

12

BOZ1403S Invalid option "&1".

Explanation
While processing the SYSIN input file, &1 was
encountered such that &1 is not an optimizer directive
and &1 is not a valid option.

System action:
The optimizer discards the line with the invalid option
and proceeds to process the next line in the SYSIN file.

User response:
Correct the line of SYSIN by using a properly spelled
directive or option.

Message return code

12

BOZ1404S "&1" can only be specified on "&2"
directive.

Explanation
The &1 option was specified on a directive but it was
not the &2 directive. For example, SEL_ARCH cannot
be specified on the BOPT directive as SEL_ARCH is
only applicable to the IEFOPZ directive.

System action:
The optimizer discards the line with the invalid option
and proceeds to process the next line in the SYSIN file.

User response:
Fix the line with &1, by specifying a proper option or
proper directive.

Message return code

12

BOZ1405S "&1" not allowed on "&2"
directive.

Explanation
The &2 directive contained an option, &1, that is not
applicable to the &2 directive. For example, the "IN"
option is not applicable and cannot be specified on the
IEFOPZ directive.

System action:
The optimizer discards the line with the invalid option
and proceeds to process the next line in the SYSIN file.

User response:
Fix the line by specifying a proper option that applies
to the &2 directive.

Message return code

12

BOZ1406S Wildcards not supported in
member specifier of "&1".

80 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Explanation
A line of SYSIN was encountered with an "IN" option
with a member specifier (&1) that included wildcards,
and an "OUT" option that included a dataset member
specifier. When wildcards are used in an "IN" option,
the "OUT" option must not include a member specifier.

System action:
The optimizer discards the line with the invalid option
and proceeds to process the next line in the SYSIN file.

User response:
Change the "IN" option to not specify wildcards or
remove the member specifier from the "OUT" option.

Message return code

12

BOZ1407S Output specifier "&1" invalid when
using wildcards on input.

Explanation
The optimizer detected a BOPT directive with a
wildcard specifier on the "IN" option and the "OUT"
option specified a USS path of &1. When member
wildcards are used on the "IN" option, the "OUT"
option must specify a dataset and not a USS path.

System action:
The optimizer discards the BOPT option with the
invalid "OUT" option and proceeds to process the next
line in the SYSIN file.

User response:
Change the "IN" option to not specify wildcards or
change the "OUT" option to specify a dataset.

Message return code

12

BOZ1408S Module specifier "&1" is an
existing directory.

Explanation
The optimizer detected an HFS directory, &1, specified
as the module location on the "IN" or "OUT" option of
the BOPT directive. In HFS, a module is an ordinary file
and not a directory.

System action:
The optimizer discards the directive and proceeds to
process the next line in the SYSIN file.

User response:
Change the path specifier on the "IN" or "OUT" option
to be an ordinary file and not a directory.

Message return code

12

BOZ1409S Output specifier "&1" is not an
existing PDS(E).

Explanation
The optimizer encountered either:

• &1 as a NEW dataset from an IEFOPZ configuration
• &1 as a DD name or dataset name on a file specifier

in the SYSIN file where the file specifier included a
member name

• &1 as a dataset specifier for the LOG option

but, the dataset associated with &1 did not exist or the
dataset was a sequential dataset and not a PDS(E).

System action:
In the IEFOPZ case, the optimizer ignores the NEW
dataset and continues on processing the IEFOPZ
configuration. Otherwise, the optimizer discards the
directive and proceeds to process the next line in the
SYSIN file.

User response:
Change the dataset location to an existing PDS(E) or
allocate the PDS(E) prior to running the optimizer.

Message return code

12

BOZ1410I Output module "&1" cannot be
replaced as REPLACE=N is in
effect.

Explanation
When the REPLACE=Y option is specified, the
optimizer issues this informational message when it
detects that the output module (&1) of the same name
already exists.

System action:
The optimizer bypasses optimizing the input module
and proceeds to process the next module or next
directive.

User response:
No action is required by the user.

Message return code

0

BOZ1411S Error getting member list from
dataset specifier "&1".

Explanation
The optimizer was processing either:

Appendix C. Messages 81

• a BOPT directive where a PDS(E) (&1) was specified
on the "IN" option (that included member wildcards)
and the PDS(E) had no members

• a IEFOPZ directive, and an OLD dataset (&1) in the
IEFOPZ configuration was found to have no
members

System action:
In the case of a BOPT directive, the optimizer discards
the directive and proceeds to process the next line of
the SYSIN file. In the case of the IEFOPZ directive, the
optimizer ignores the OLD dataset and proceeds to
process the rest of the IEFOPZ configuration.

User response:
Check that the proper dataset was specified on the
BOPT directive or that the proper dataset was
specified in the IEFOPZ configuration.

Message return code

12

BOZ1412S IEFOPZ is not available on this
system.

Explanation
The optimizer was processing an IEFOPZ directive on a
z/OS system that did not have the IEFOPZ feature

System action:
The optimizer discards the IEFOPOZ directive and
proceeds to process the next line in the SYSIN file.

User response:
The IEFOPZ facility is only available on z/OS V2R2 and
above. If the optimizer is run on a z/OS system prior to
V2R2, change SYSIN to not specify the IEFOPZ
directive. If the optimizer is run on z/OS V2R2 or
higher, have your system programmer install the
appropriate PTFs required for the IEFOPZ feature.

Message return code

12

BOZ1413S Problem with IEFOPZQ system
service (return code="&1", reason
code="&2"): &3.

Explanation
The optimizer encountered a problem reading an
IEFOPZ configuration while processing an IEFOPZ
directive. &1 specifies the error return code and &2
specifies the error reason code of the IEFOPZQ system
service that is used to read the configuration. &3 gives
a short description of the reason code.

System action:
The optimizer discards the IEFOPZ directive and
proceeds to process the next line in the SYSIN file.

User response:
Provide this error message to your system programmer
to see if the error is valid If there are no issues with
IEFOPZ usage, consult IBM service providing this
optimizer message and any other IEFOPZ
configuration information.

Message return code

12

BOZ1414S Input specifier "&1" is not an
existing PDS(E).

Explanation
The optimizer encountered either:

• &1 as an OLD dataset from an IEFOPZ configuration
• &1 as a DD name or dataset name on a file specifier

in the SYSIN file where the file specifier included a
member name

but, the dataset associated with &1 did not exist or the
dataset was a sequential dataset and not a PDS(E).

System action:
In the IEFOPZ case, the optimizer ignores the OLD
dataset and continues on processing the IEFOPZ
configuration. Otherwise, the optimizer discards the
directive and proceeds to process the next line in the
SYSIN file.

User response:
Change the dataset name to an existing PDS(E) or
allocate the PDS(E).

Message return code

12

BOZ1415S No DD definition is supplied for
"&1".

Explanation
The optimizer could not find a DD definition for a
mandatory optimizer DD (&1), or no DD definition was
specified for a DD (&1) used in the SYSIN file.

System action:
If the DD is for a mandatory DD of the optimizer, the
optimizer immediately terminates with a return code
of 16. Otherwise, the optimizer discards the line of the
SYSIN file that included the DD definition and
processes the next line of SYSIN.

User response:
Provide a DD definition for the DD in error.

Message return code

16, if &1 is a mandatory DD, otherwise 12

82 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

BOZ1416S A member name is not specified
for PDS(E) specifier "&1".

Explanation
The optimizer encountered an "IN" or "OUT" option
that specified a PDS(E) (&1) and requires a member
name, but no member was included on the option.

System action:
The optimizer discards the directive with the invalid
"IN" or "OUT" option and proceeds to process the next
line in the SYSIN file.

User response:
Change the "IN" or "OUT" option to include a dataset
member.

Message return code

12

BOZ1417S File "&1" does not exist.

Explanation
Input file &1 could not be located. Two common
reasons this can happen are:

1. A member of an existing input module PDS(E) does
not exist

2. An invalid HFS path was specified

System action:
The optimizer ignores processing the directive (or
input module) that used the invalid file specification
and proceeds to process the next input module or next
directive

User response:
Correct the problem by specifying an existing dataset
member or correct the path specification to point to an
existing HFS file.

Message return code

12

BOZ1418S Invalid file specification "&1".

Explanation
The specification of the file &1 is incorrect. Examples
of incorrect specifications include:

1. A member name is specified twice:

• once, in the definition of a DD
• second, in an optimizer option or directive that

included the DD definition
2. A HFS path is specified, but a directory in the path

is non-existent or the path is not accessible.

3. The length of a DD name or dataset name is too
long.

System action:
The optimizer ignores processing the directive (or
input module) that used the invalid file specification
and proceeds to process the next input module or next
directive

User response:
Specify a proper format for the file specification (&1).

Message return code

12

BOZ1419S Output of load module(s) to "&1"
is not supported when input has
program object format.

Explanation
An input module has a newer program object format
but the optimized module (&1) is targeted to the older
load module format. This happens when the input
module is a member of a PDSE or a file in a HFS path,
but the optimized module is targeted to a member of a
PDS or is targeted to a sequential dataset.

System action:
The optimizer terminates processing the input module
and proceeds to process the next input module or next
directive.

User response:
Correct the output location (&1) of the optimized
module to be a member of a PDSE or to a HFS path.

Message return code

12

BOZ1420S Path "&1" must be absolute and
begin with a "/".

Explanation
The specification (&1) of an input or output file is to an
HFS file, but a full path specification is not provided for
&1. A full or absolute file specification must begin with
a "/" character. This error can happen, for example,
when the optimizer processes an HFS specification of
an a input module, output module or listing transform.

System action:
The optimizer bypasses optimizing a module when an
invalid path is specified and proceeds to process the
next input module or next directive.

User response:
Correct the specification of the path (&1) to be
absolute.

Message return code

Appendix C. Messages 83

12

BOZ1421S Binder API "&1" failed: return
code=&2 reason code=&3.

Explanation
While processing a module using a binder API (&1),
the binder API returned with an unexpected return
code (&2) and reason code (&3).

System action:
In most cases, the optimizer discontinues processing
the input module and proceeds to process the next
input module or next directive. In some cases (for
example, return code=4, reason code = 0x83000526),
the binder is able to recover from the problem (in this
case unexpected input) and the optimization of the
input module proceeds.

User response
Examine binder documentation for information on the
reason code. The reason code information can help
determine the cause of the problem. For example, the
reason code may indicate that the input file for
optimization is not a proper load module or program
object file. In this case, correct the JCL or SYSIN file to
specify a proper input module. For information about
binder API return codes and reason codes, see z/OS
MVS Program Management: Advanced Facilities.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code

12 when the optimizer discontinues processing,
otherwise 4.

BOZ1422S Module cannot be processed as it
is not marked executable.

Explanation
The optimizer encountered an input module that was
not marked executable. The optimizer requires the
module to be marked executable in order for the
optimization process to succeed.

System action:
The optimizer discontinues processing the input
module and proceeds to process the next input
module or next directive.

User response:
If this problem is expected for the module, then either
ignore the message or change the optimizer directives
to exclude the module. Otherwise, if the problem is
unexpected, correct the bind steps that produced the

input module so that the module resulting from the
bind is marked executable.

Message return code

12

BOZ1423S Module cannot be processed as it
was linked EDIT=NO or otherwise
cannot be reprocessed.

Explanation
The optimizer encountered an input module that
cannot be edited. The most common case where this
can happen is when the bind step used to produce the
module included the EDIT=NO binder option. Modules
that cannot be edited are missing important
information required by the optimizer.

System action:
The optimizer discontinues processing the input
module and proceeds to process the next input
module or next directive.

User response:
If this problem is expected for the module, then either
ignore the message or change the optimizer directives
to exclude the module. Otherwise, if the problem is
unexpected, remove the EDIT=NO option from the
bind steps that produced the input module.

Message return code

12

BOZ1424S Module cannot be appropriately
processed as program is SIGNed.

Explanation
The optimizer encountered an input module that is
marked SIGNed.

System action:
The optimizer does not supported SIGNed modules
and discontinues processing the input module and
proceeds to process the next input module or next
directive.

User response:
If this problem is expected for the module, then either
ignore the message or change the optimizer directives
to exclude the module. Otherwise, if the problem is
unexpected, correct the bind steps used to produce
the module so that the module is not marked SIGNed.

Message return code

12

BOZ1426S Link library "SYSLIB" not specified
or does not specify a PDS(E).

84 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm

Explanation
The DD name card allocating link library SYSLIB is
missing or doesn’t specify a PDS(E) data set in the
optimizer job step JCL.

System action:
The optimizer terminates optimizing the input module
and proceeds to process the next module.

User response:
Specify SYSLIB correctly in your optimizer job step
JCL. See New SYSLIB requirement for the JCL used to
invoke ABO for more information.

Message return code

12

BOZ1428U Insufficient memory encountered
during binder API "&1": return
code=&2 reason code=&3.
Terminating optimizer.

Explanation
While processing a module using a binder API (&1),
the binder was unable to proceed due to memory
being low. The binder produces the return code (&2)
and reason code (&3) indicating the memory problem.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response
Consider using the JCL MEMLIMIT or JCL REGION
parameters to increase the memory used during the
optimization process. For more information, see the
z/OS MVS Initialization and Tuning Reference and the
z/OS MVS Initialization and Tuning Guide.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code

16

BOZ1429U "&1" I/O error encountered during
binder API "&2": return code=&3
reason code=&4. Terminating
optimizer.

Explanation
While processing a module using a binder API (&2),
the binder detected an I/O error of type &1. The binder
API provided the return code (&3) and reason code
(&4).

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response
The type (&1) of I/O problem and the reason code (&4)
can help direct the steps of how to diagnose and fix
the problem. See binder documentation for an
explanation of the reason code. Now, an example is a
"WRITE" (&1) error of the optimized module because
the output PDS(E) or file system is full. The binder API
information (&2) or reason code (&4) can help confirm,
or lead to, the cause of the "WRITE" problem. Note
that increasing the size of the PDS(E) (or file system)
could fix the "WRITE" problem. For information about
binder API return codes and reason codes, see z/OS
MVS Program Management: Advanced Facilities.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code

16

BOZ1430U Unrecoverable "&1" error
encountered during binder API
"&2": return code=&3 reason
code=&4. Terminating optimizer.

Explanation
While processing a module using a binder API (&2),
the binder detected an error of type &1. The binder
API provided the return code (&3) and reason code
(&4).

System action:
The binder immediately terminates with a return code
of 16.

User response
The type (&1) of problem and the reason code (&4)
can help direct the steps of how to diagnose and fix
the problem. If you are unable to diagnose the
problem, consult IBM service for assistance. For
information about binder API return codes and reason
codes, see z/OS MVS Program Management: Advanced
Facilities.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code

16

Appendix C. Messages 85

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm

BOZ1431S Input module with unsupported
feature (&1) encountered during
binder API "&2": return code=&3
reason code=&4. Module
bypassed.

Explanation
While processing a module using a binder API (&2),
the binder detected that the module cannot be
optimized due to the module contained a feature &1
that is not supported. The binder API provided the
return code (&3) and reason code (&4).

One example of an unsupported feature is when the
input is an object module (as opposed to the input
being a load module or program object). Another
example of this problem, is when the input module is
not fully bound and contains "UNRESOLVED"
references.

System action:

User response
Since the input module cannot be supported, the
choices are:

• ignore the message
• change optimizer input to avoid optimizing the

module
• fix the problem. For example, in the case of a module

with "UNRESOLVED" references, change the build
steps used to produce the module so that the
module is fully bound

For information about binder API return codes and
reason codes, see z/OS MVS Program Management:
Advanced Facilities.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code

12

BOZ1432S Output module size exceeded
module format limitations and
cannot be saved.

Explanation
The optimizer attempted to write the optimized
module but ran into output format restrictions. A load
module, saved into a PDS member (or sequential
dataset), has the most restrictive format. Far less
common is encountering a format limitation with a
program objects (written to PDSE or HFS path).

System action:

The optimizer terminates optimizing the input module
and proceeds to process the next module or next
directive.

User response:
If the output module is to be saved into a PDS member
or sequential dataset, consider changing the output
location to be a member of a PDSE. Otherwise,
consider splitting the program into multiple modules.

Message return code

12

BOZ1436S Invalid ARCH specification : &1

Explanation
An invalid or unsupported architecture specification
(&1) was detected in one of the following cases:

1. In an ARCH option or SEL_ARCH option when
processing the SYSIN file

2. When processing a NEW dataset in an IEFOPZ
configuration

System action:
If the invalid specification was detected on a line of
the SYSIN file, the optimizer discards the line with the
invalid option and proceeds to process the next line in
the SYSIN file. If the invalid specification was detected
processing a NEW dataset of an IEFOPZ configuration,
the optimizer ignores the NEW dataset and proceeds
to process the remainder of the IEFOPZ configuration

User response:
Correct the SYSIN file or IEFOPZ configuration by
specifying an ARCH level supported by the optimizer.

Message return code

12

BOZ1437S No BOPT or IEFOPZ directive
found

Explanation
The optimizer can neither find a BOPT nor an IEFOPZ
directive.

System action:
The optimizer terminates execution and returns to the
operating system with a return code of 12.

User response:
Check that your JCL includes at least one BOPT or
IEFOPZ directive.

Message return code

12

BOZ1438U dynfree dyn failed: rc=&1 for DD
&2

86 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm

Explanation
The optimizer detected an error attempting to free an
internal input DD name (&2) that the optimizer was
using as part of the optimization process.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
This problem could have been caused by an earlier
problem. Correct any problems reported in the log file
and retry the optimization process. If the problem
persists, consult IBM service for assistance.

Message return code

16

BOZ1439U dynfree saveDyn failed: rc=&1 for
DD &2

Explanation
The optimizer detected an error (the dynfree service
returned &1) attempting to free an internal output DD
name (&2) that the optimizer was using as part of the
optimization process.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
This problem could have been caused by an earlier
problem. Correct any problems reported in the log file
and retry the optimization process. If the problem
persists, consult IBM service for assistance.

Message return code

16

BOZ1446U An I/O error occurred while
writing &1

Explanation
The optimizer detected an I/O error when writing to
&1, where &1 could be either 'the Listing transform' or
'the Log file'.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
Check whether the PDS(E) or file systems is full and
allocate a larger file for the PDS(E) or increase the size
of the file system. Also check whether the dataset was

allocated with a proper record format and record
length.

Message return code

16

BOZ1447U An Unexpected I/O error occurred

Explanation
The optimizer detected an I/O error during execution.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
Check the definitions of the output files (you should be
able to exclude the output modules) to ensure a
proper record length and record format is used and
check whether the files are full.

Message return code

16

BOZ1449U Unhandled out of memory
exception

Explanation
The optimizer was unable to continue due to memory
being low.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
Consider using the JCL MEMLIMIT or JCL REGION
parameters to increase the memory used by the
optimizer. For more information, see thez/OS MVS
Initialization and Tuning Reference and the z/OS MVS
Initialization and Tuning Guide.

Message return code

16

BOZ1450U Assertion failure, check logs for
traceback

Explanation
The optimizer was unable to continue as an
unexpected condition was encountered during
processing.

System action:

Appendix C. Messages 87

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
Unexpected problems could happen due to an earlier
problem. Correct any problems reported in the log file
and retry the optimization process. If the problem
persists, consult IBM service for assistance.

Message return code

16

BOZ1451S dynalloc(): failed for DSN &1 with
DD &2, errcode &3, info code &4

Explanation
The optimizer encountered an error allocating an
internal DD (&2) for dataset (&1). &3 is the error code
returned by the MVS dynamic allocation functions. &4
is the information code returned by the MVS dynamic
allocation functions.

System action:
The optimizer terminates optimizing the input module
and proceeds to process the next module or next
directive.

User response:
Check that the dataset (&2) exists and is accessible
and check that your JCL does NOT include a definition
for the same DD (&2). Also, unexpected problems
could happen due to an earlier problem. Correct any
problems reported in the log file and retry the
optimization process. If the problem persists, consult
IBM service for assistance.

Message return code

12

BOZ1452S dynalloc(): failed for path &1 with
DD &2, errcode &3, info code &4

Explanation
&3 is the error code returned by the MVS dynamic
allocation functions. &4 is the information code
returned by the MVS dynamic allocation functions.

System action:
The optimizer terminates optimizing the input module
and proceeds to process the next module or next
directive.

User response:
Check that the path is accessible and can be written to
and check that your JCL does NOT include a definition
for the same DD (&2). Also, unexpected problems
could happen due to an earlier problem. Correct any
problems reported in the log file and retry the

optimization process. If the problem persists, consult
IBM service for assistance.

Message return code

12

BOZ1453U dynalloc(): failed for DUMMY DD
&1 errcode &2, info code &3

Explanation
The optimizer encountered an error allocating a
mandatory DUMMY DD (&1) that is required for the
optimization process. &2 is the error code returned by
the MVS dynamic allocation functions. &3 is the
information code returned by the MVS dynamic
allocation functions.

System action:
The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:
Check that your JCL does NOT include a definition for
the same DD (&1). Also, unexpected problems could
happen due to an earlier problem. Correct any
problems reported in the log file and retry the
optimization process. If the problem persists, consult
IBM service for assistance.

Message return code

16

BOZ1455W Unsupported feature "&1" found

Explanation
This message is issued in one of the following
situations:

1. When ABO encounters a COBOL CSECT (i.e.
compiled COBOL program) built by a compiler not
eligible for use with ABO or the CSECT contains a
COBOL language feature not supported by ABO.

2. When ABO encounters a CSECT that is too complex
to safely optimize.

In the first situation, ABO detected a feature "&1" that
it does not support in the CSECT being processed. See
COBOL module requirements for the compilers eligible
for use with ABO and the COBOL language features not
supported by ABO.

In the second situation, ABO has determined that the
CSECT is too complex to be safely optimized so it has
been skipped. ABO will only optimize a CSECT if it can
ensure the optimized program will execute with the
same logic as the original compiled program. In cases
where the CSECT is so complex that ABO cannot
guarantee this, ABO stops the optimization process

88 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

and skips this CSECT. Any other eligible CSECTs in the
module will still be processed.

Note that this message is issued for informational
purposes only and does not indicate a functional issue
with ABO.

System action:
ABO bypasses optimization of the CSECT and
proceeds to process the next CSECT.

User response:
If you see message BOZ1455 issued for a particular
unsupported feature while optimizing a large number
of your modules, you may open an RFE to indicate that
the lack of this feature is inhibiting your ability to use
ABO effectively.

Message return code

4

BOZ1456S "&1" cannot be both optimizer
input and optimizer output.

Explanation
The optimizer does not allow a dataset or file to be
used as input to the optimizer as well as output from
the optimizer. For example, an optimized module
cannot be written to a PDS(E) if that PDS(E) is also a
source of input modules. This message is emitted
when &1 is used as both a location of input to the
optimizer and a location of output from the optimizer.

System action:
The optimizer terminates optimizing the input module
and proceeds to process the next module.

User response:
Correct your JCL or SYSIN file such that the output
datasets are separate from input datasets.

Message return code

12

BOZ1457S Invalid filter expression "&1".

Explanation
The optimizer cannot process the mem_expr
parameter of BOPT optimizer directive or the expr
parameter of the CSECT optimizer option. The
expression contains invalid syntax or wildcards and
cannot be processed as written.

System action:
The optimizer terminates optimizing the current
directive and proceeds to process the next directive.

User response:

Correct the expression. See the description of the
mem_expr parameter of “BOPT” on page 16 and the
expr parameter of the CSECT optimizer option.

Message return code

12

BOZ1490W Warning: AMODE/RMODE conflicts
encountered during binder API
"&1": return code=&2 reason
code=&3. Operation performed
and processing continues.

Explanation
During the optimization process, the binder detected a
conflict with the AMODE and RMODE settings. This
problem was detected by the binder API (&1) for
which the binder issued a return code (&2) and reason
code (&3). You can use binder reason code
documentation along with the reason code (&3) to
determine the precise nature of the conflict. Normally,
the conflict is already present in the input module and
not introduced by the optimization process.

System action:
The binder issues this BOZ1490 warning message and
continues with the optimization of the input module.

User response:
The warning message may be an indicator of a
problem with the input module being optimized. Fixing
the problem may require fixing the build steps used to
produce the input module. For information about
binder API return codes and reason codes, see z/OS
MVS Program Management: Advanced Facilities.

Message return code

4

BOZ1491W Warning: problems encountered
adding aliases to directory during
binder API "&1": return code=&2
reason code=&3. Module saved
and processing continues.

Explanation
During the optimization process, the binder detected
an issue adding aliases to a directory. This problem
was detected by the binder API (&1) for which the
binder issued a return code (&2) and reason code (&3).
An alias cannot be added to a PDS(E) directory when
the binder finds that there is a member of the PDS(E)
directory with the same name as the name of the alias.

System action:
The binder issues this BOZ1491 warning message and
continues with the optimization of the input module.

Appendix C. Messages 89

https://www.ibm.com/developerworks/rfe/execute?use_case=changeRequestLanding
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm

User response
To resolve this problem, it is important to understand
why there is an existing member in the output PDS(E)
with the same name as the name of the alias. For
example:

• Do not specify an alias name on the member
specifier of IN option of a BOPT directive. If an alias
name was specified, delete this BOPT directive and
delete the member from the target dataset.

• An incorrect member specifier on the OUT option of
a BOPT directive could cause a conflict with the
name of an alias. Ensure that the OUT option of a
BOPT directive has the same member specifier as
the member specifier supplied of the IN option.

• Merging aliases from more than one input datasets
could cause conflicts with aliases and member
names of the two datasets. It is recommended that a
different output dataset be used for each input
dataset. For information about binder API return
codes and reason codes, see z/OS MVS Program
Management: Advanced Facilities.

Message return code

4

BOZ1492W Warning: input module "&1" with
exported symbols is saved to
different named module "&2".

Explanation
The optimizer detected an input module (&1) in a
PDS(E) that included exported symbols and the
optimized module was being written to a differently
named member (&2) in an output PDS(E).

System action:
The binder issues this BOZ1492 warning message and
continues with the optimization of the input module.

User response:
To fix the problem, change your JCL or SYSIN file such
that the member name of the optimized module is the
same as the member name of the input module.
Failing to do so could result in runtime problems with
locating the optimized module because of the change
in the member name.

Message return code

4

BOZ1493S Concatenated DD "&1"
encountered and not is allowed for
"&2".

Explanation
The optimizer detected an input or output DD
definition (&1) that was the concatenation of two or
more datasets. &2 provides the context in which the
DDs were used. For example, &2 may indicate that the
DD was used as an input module location, or as an
output module location, or as an output listing
transform location.

System action:
The optimizer bypasses directives that include
concatenated DD definitions and the optimizer
proceeds to process the next directive.

User response:
Fix your JCL to not include a concatenated DD
definition for input modules, output modules and for
listing transforms.

Message return code

12

BOZ1494S Module not processed as it is not
fully bound.

Explanation
During the optimization process, a module was
encountered in input that is not fully bound and the
ALLOW=NOUNRESEXE option was specified. The
optimizer will not process the module that is not fully
bound unless the ALLOW=UNRESEXE option is
specified.

System action:
The optimizer terminates optimizing the input module
and proceeds to process the next module or next
directive.

User response:
If the intent is to optimize partially bound modules,
remove the ALLOW=NOUNRESEXE option. If the intent
is to only optimize fully bound modules, ignore the
error, or correct your JCL or SYSIN file to only process
fully bound modules.

Message return code

12

BOZ1495W Rebind of dependent DLL "&1"
with RTI bypassed.

Explanation:
The optimizer emits this warning message when the
RTIBIND=IN | OUT | ALL option was specified for the
dependent DLL module &1 it’s processing.

System action:
The optimizer bypasses rebinding the dependent DLL
module &1 and continues to process the next module
if it’s present. It has no impact on the profiling of the

90 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

main DLL module. As long as the main DLL is
successfully rebound with the RTI Profiler modules
then profiling information of the main and the
dependent DLL modules will be collected.

User response:
No action is required by the user. In case the RTI
Profiler enabled dependent DLL module is required for
some other purpose, you can use the Manual RTI
rebinding instructions.

Message return code

4

BOZ1496W Rebind of dependent DLL “&1”
(“&2”) with RTI bypassed.

Explanation:
The optimizer issues this warning message when the
RTIBIND=IN | OUT | ALL option was specified for the
dependent DLL module &1(&2) it’s processing.

System action:
The optimizer bypasses rebinding the dependent DLL
module &1(&2) and continues to process the next
module if it’s present. It has no impact on the profiling
of the main DLL module. As long as the main DLL is
successfully rebound with the RTI Profiler modules
then profiling information of the main and the
dependent DLL modules will be collected.

User response:
No action is required by the user. In case the RTI
Profiler enabled dependent DLL module is required for
some other purpose, you can use the Manual RTI
rebinding instructions.

Message return code

4

BOZ4089I IEFOPZ: did not get ARCH=&1
match for dataset: '&2' which has
ARCH=&3.

Explanation
While processing an IEFOPZ optimizer directive, the
optimizer emits this informational message whenever
a NEW dataset (&2) is found in an IEFOPZ
configuration that has an ARCH specification (&3) that
does not match the SEL_ARCH selector (&1) that was
specified on the IEFOPZ optimizer directive.

System action:
The optimizer bypasses the NEW dataset and
processes the next NEW dataset in the configuration.

User response:
No action is required by the user.

Message return code

0

BOZ4091I IEFOPZ: did not get STATE=&1
match for dataset: '&2' which has
STATE=&3.

Explanation
While processing an IEFOPZ optimizer directive, the
optimizer emits this informational message whenever
a NEW dataset (&2) is found in an IEFOPZ
configuration that has a STATE specification (&3) that
does not match the SEL_STATE selector (&1) that was
specified on the IEFOPZ optimizer directive.

System action:
The optimizer bypasses the NEW dataset and
processes the next NEW dataset in the configuration.

User response:
No action is required by the user.

Message return code

0

BOZ4092I IEFOPZ: did not get DSN='&1'
match for dataset '&2'.

Explanation
While processing an IEFOPZ optimizer directive, the
optimizer emits this informational message whenever
an OLD dataset (&2) is found in an IEFOPZ
configuration that does not match the SEL_OLD
selector value (&1) that was specified on the IEFOPZ
optimizer directive.

System action:
The optimizer bypasses the OLD dataset and
processes the next OLD dataset in the configuration.

User response:
No action is required by the user.

Message return code

0

BOZ4097I No members in dataset '&1' to
process

Explanation
This message is emitted when there are no members
in the dataset to process.

System action:
The optimizer continues processing the next dataset.

User response:
No action is required by the user.

Message return code

Appendix C. Messages 91

0

BOZ4101W No applicable COBOL code section
found, return code 4

Explanation
This message is emitted in the following cases:

1. When the optimizer encounters a load module but
does not optimize any CSECTs within the load
module (note: the message is not printed if the
REPLACE=Y option is specified and an optimized
module already exists)

2. After a BOPT directive that has member wildcards
in the "IN" option, but no modules in the "IN"
dataset were optimized

3. After an OLD dataset is processed and no modules
in an OLD dataset were optimized

4. After an IEFOPZ directive is processed but no
modules were optimized

System action:
The optimizer continues processing the next module of
input.

User response:
No action is required by the user.

Message return code

4

BOZ4107I INFO: IDRL record not added to
CSECT &1 as load module format
does not support three IDRLs.
Processing continues.

Explanation
The optimizer issues this informational message when
an IDRL record (for the binary optimizer itself) could
not be added to an optimized CSECT in a load module
because that CSECT already has 2 IDRL records. Note:
a maximum of 2 IDRLs per CSECT is a restriction of
load modules in PDS (but is not a restriction for
program objects in PDSE).

System action:
The optimizer continues its processing of the output
load module.

User response:
No action is required by the user.

Message return code

0

BOZ4109I INFO: Adding a third IDRL to load
module CSECT "&1".

Explanation
While processing a CSECT (&1) in a load module, the
optimizer emits this informational message when the
optimizer adds its language record as the third IDRL of
the CSECT (&1). Note that an update to the binder is
required so that the binder can properly add a third
IDRL to a CSECT. If the binder update is not installed
on your system, the optimizer will emit a subsequent
warning message when attempting to save the
optimized load module.

System action:
If the optimizer emits a warning message when saving
the module, the language record may not have been
added to the CSECT and the optimizer continues
processing of the CSECT. Otherwise, processing of the
CSECT was successfully performed.

User response:
If the optimizer emits a warning message when saving
the module, you should contact your system
programmer to install the binder update and perform
the optimization process again. Otherwise, no action is
required by the user. The required binder update for
this message is under APAR OA50460. See
“Supported operating systems” on page 3 for more
information.

Message return code

0

BOZ4110I INFO: performing a second bind to
handle private section "&1" in
class "&2" referring to ENTRY
"&3" at offset &4.

Explanation
The optimizer emits this message when processing a
CSECT that had a COBOL ENTRY statement (&3) and
there was a reference to the ENTRY (&3) from a private
section (&1) from within a class (&2, which is normally
C_WSA) at an offset (&4). Note that an update to the
binder is required so that the second bind works
successfully. Without the binder update, the optimized
program could experience problems.

System action:
If the binder update is available, processing completes
successfully. But, if the binder update is not available,
the second bind may appear to complete successfully,
but, runtime errors may happen.

User response:
If the binder update is installed on your system, no
action is required. Otherwise, have your system
programmer install the binder update and perform the
optimization process again. The required binder
update for this message is under APAR OA50460. See

92 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

“Supported operating systems” on page 3 for more
information.

Message return code

0

BOZ4111I INFO: performing update to
private section "&1" in class "&2"
referring to ENTRY "&3" at offset
&4.

Explanation
The optimizer emits this message when processing a
CSECT that had a COBOL ENTRY statement (&3) and
there was a reference to the ENTRY (&3) from a private
section (&1) from within a class (&2) at an offset (&4).
Note that an update to the binder is required so that
the second bind works successfully. Without the
binder update, the optmized program will emit an error
message when processing the reference.

System action:
If the binder update is not available, the optimizer
emits an error processing the reference. Otherwise,
the binder processes the reference successfully.

User response:
If the optimizer emitted an error processing the
reference, have your system programmer install the
binder update and perform the optimization process
again. Otherwise, no action is required. The required
binder update for this message is under APAR
OA50460. See “Supported operating systems” on
page 3 for more information.

Message return code

0

BOZ4113I CSECT &1 was excluded by filter -
skip

Explanation
This message is emitted when a CSECT is excluded by
the optimizer due to the expression in the CSECT
optimizer option.

System action:
The optimizer continues processing the next CSECT.

User response:
No action is required by the user.

Message return code

0

BOZ4114I INFO: processing module that is
not fully bound with
ALLOW=UNRESEXE option in
effect.

Explanation
When the ALLOW=UNRESEXE option is specified, the
optimizer issues this informational message when it
encounters a module in input that is not fully bound.

This message is not issued if the module is fully bound.

This message can be used to determine which partially
bound modules were processed by the optimizer.

System action:
If the binder update is not available, the optimizer
emits an error processing the reference. Otherwise,
the binder processes the reference successfully.

User response:
The optimizer processes the partially bound module
and outputs an optimized partially bound module.

Message return code

0

BOZ4116I Binder message "&1"

Explanation
The optimizer uses binder services and a service might
fail which prevents a module from being optimized. In
response to a binder service that fails, ABO produces a
message such as BOZ1429 and terminates processing
in some manner. The BOZ1429 message might lack
detailed information as to why the binder service
failed. For example, the BOZ1429 message indicates
that the binder found some problem with the input
module but BOZ1429 does not include the precise
input problem that the binder found. To provide more
information about binder services that fail, the
optimizer captures severe binder messages and
includes the text of a binder message within &1 of the
BOZ4116 informational message. This means that,
when a binder service fails, ABO normally emits two
messages:

1. The BOZ4116 message with &1 holding the text of
a severe binder message. The BOZ4116 message is
followed by

2. A summary message such as BOZ1429, indicating
the general nature of binder failure.

System action:
See the "System action" section of the summary
message to determine the actions of the optimizer.

User response:
See the "User response" section of the summary
message to determine what to do. The BOZ4116
message might provide information that helps guide
your response.

Message return code

Appendix C. Messages 93

0

BOZ4117I Member "&1" was excluded by
filter - skip

Explanation
This message is emitted when a module is excluded by
the optimizer due to the expression in the IN option of
the BOPT directive.

System action:
The optimizer continues processing the next module.

User response:
No action is required by the user.

Message return code

0

BOZ4119S Continuation indicated on SYSIN
line &1. Unable to read SYSIN line
&2.

Explanation
Continuation was indicated on line &1 of SYSIN with
the last non-blank character of line &1 being a
continuation char (either '+' or '-'). While reading
SYSIN, the optimizer was unable to read line &2.

System action:
The optimizer discards the line.

User response:
Either remove the continuation character at the end of
line &1 of SYSIN, or add a new line &2 to the SYSIN
that will continue line &1.

Message return code

12

BOZ4120S Cannot have more than one IN= or
OUT= specifier.

Explanation
This message is emitted when more than one IN or
OUT specifier is detected in a BOPT directive.

System action:

The optimizer continues processing the next BOPT
directive.

User response:
Remove IN or OUT specifiers from the BOPT directive
until there is no more than one of each per directive.

Message return code

12

BOZ4121S Invalid log specification. '&1' is
not a directory.

Explanation
Only directories are valid specifiers for the LOG option.
&1 is not a directory.

System action:
The LOG option is ignored.

User response:
Correct the LOG specification to a supported format,
see the LOG option for supported specifications.

Message return code

12

BOZ4124I The HANDLERS option is now
deprecated and no longer
necessary; the previously default
HANDLERS=Y behaviour now
always applies.

Explanation
The optimizer option HANDLERS is now deprecated
and is no longer supported nor required.

System action:
Regardless of the HANDLERS option specified, the
optimizer will always behave as if the previously
default and conservative HANDLERS=Y option is in
effect.

User response:
No action is required by the user.

Message return code

0

94 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Appendix D. Run Time Instrumentation report

Note: The RTI profiler output format is subject to change at any time and with no prior notice. Therefore,
do not rely on the specific layout or content of the output as described below in building any post-
processing tooling that uses the RTI profiler output.

The output of the RTI Profiler is a text file split into the following sections:

1. RTI options section
2. Module info section
3. Summary report section
4. Sampling tables section
5. Report Totals section

RTI options section
The RTI options section displays the default RTI configuration. These options are fixed and cannot be
changed. For example:

* RTI options 2020/03/02 14:23:04 *

SCALING-FACTOR=0000500000
ANALYSIS-MODE=1, PDF-MODE=0, VERBOSE=0
BUF-SIZE=0000001024, #BUFS=0000000004, TIMER-INTERVAL=0000000050
**

Module info section
Detailed module information is displayed next. This information includes the module name (specified by
MJNAME), address, and length and other information on the content of the module. For example:

**
* Module Info *
**
QUERYING MODULE INFO: ADDR=X'26EA5154'
CSVQUERY: RC=00, VALID=X'573C0800'
MJNAME=COBMOD
EPTKN=X'000003B703E8003B'
EPA=X'26EA4C48'
EXTENT=X'0001', ADDR=X'26EA4C48', LEN=X'000013B8'
ATTR1=X'08'
ATTR2=X'10'
ATTR3=X'C0'
XATTR1=X'00'
PID=PGMF
DIAG=X'7F6E4F48'
MJNAME=COBMOD , EPADDR=X'26EA4C48'
EXTENT=X'0001', ADDR=X'26EA4C48', LEN=X'000013B8'
OPENING BINDER INTERFACE
CLASS=B_TEXT , SEG=X'0001', LOAD=X'0', OFF=X'00000000', LEN=X'000013B8'
CLASS=B_MAP , SEG=X'0001', LOAD=X'2', OFF=X'00000000', LEN=X'00000000'
...
SEG=X'0001' => EXTENT=X'0001'

The module info section is followed by a list all the CSECTs and the release and version information for the
translator(s) that produced the CSECT. The translator is typically a compiler, optimizer or assembler
product. For example:

**
* List of CSECTs processed for module COBMOD *
**

© Copyright IBM Corp. 2015, 2021 95

COBMAIN: Enterprise COBOL V4 , VER=42, MOD=00, PID=5655S7100
 TYPE=B_TEXT , OFF=X'00000000', LEN=X'00000988'
 ADDR=X'26EB6A30'-X'26EB73B7'
COBMAIN: Automatic Binary Optimizer, VER=13, MOD=00, PID=5697-AB1
SUB1: Enterprise COBOL V4 , VER=42, MOD=00, PID=5655S7100
 TYPE=B_TEXT , OFF=X'00000670', LEN=X'00000C26'
 ADDR=X'26900670'-X'26901295'
CEESTART: HIGH-LEVEL ASSEMBLER , VER=01, MOD=06, PID=569623400
 TYPE=B_TEXT , OFF=X'00001F00', LEN=X'000000B0'
 ADDR=X'26901F00'-X'26901FAF'
...

Each entry in the CSECT list represents CSECT details in the format:

Module name: Translator name, Major and minor version, mod level, PID

There are also additional data provided, such as CSECT offset (OFF) in the module, length (LEN) of the
CSECT, and the loaded address (ADDR) of the CSECT.

Note that some CSECTs may have been translated by more than one product, in which case an additional
entry appears one for each translator used. In this example, there are two entries for the CSECT
COBMAIN – one for Enterprise COBOL V4 and another for ABO. This indicates that COBMAIN is the ABO
optimized version of a program originally compiled by Enterprise COBOL V4.

If no translator name is available then a dash sign (-) is displayed in the translator name field, but the PID
of the translator product is always displayed.

Summary report section
A high-level summary report section is displayed next, which includes a summary report by language
subsection and a summary report by module subsection. This section is useful for obtaining an overall
view of CPU performance without having to drill down into the detailed profiling information per CSECT.

For example:

**
* Summary report 2020/03/02 14:23:18 *
**
#TOTAL SAMPLES=0000000000012450, #MAPPED SAMPLES=0000000000011946
**
* Summary report by language *
**
Language | Number Of Samples | % TOTAL
 COBOL | 32724 | (100.00%)
 Application | 12 | (0.03%)
 LE | 32712 | (99.96%)
 PLI | 0 | (0.00%)
 C/C++ | 0 | (0.00%)
 Java | 0 | (0.00%)
**
* Summary report by module *
**
MODULE=COBMOD, EXTENT=X'0001', #SAMPLES=0000000000011946, (93.55%)
 CSECT Name | Number Of Samples | % of COBMOD | % TOTAL
 COBMAIN | 10234 | (85.67%) | (82.20%)
 SUB1 | 1203 | (10.07%) | (9.66%)
 SUB2 | 507 | (4.24%) | (4.07%)
 RICHK | 2 | (0.02%) | (0.02%)
MODULE=IGZCPAC, EXTENT=X'0001', #SAMPLES=0000000000000430, (3.45%)
CSECT Name | Number Of Samples | % of IGZCPAC
 IGZCXDI | 267 | (62.09%)
 IGZCXMU | 163 | (37.91%)
MODULE=MODC, EXTENT=X'0001', #SAMPLES=0000000000000074, (0.59%)
**

All numeric values in the profiling report are displayed in either decimal or hexadecimal. All hexadecimal
values in the profiling output are indicated by wrapping the number in the X` ` notation. If the value is not
wrapped in the X` `notation, then it is in a decimal representation. All the samples values in the profiling
report are in decimal.

A larger number of samples attributed to a particular module or CSECT means a higher relative amount of
CPU time is spent in these parts of the application when it ran.

96 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

The percentage values provided per module (for example, 93.55% for MODULE=COBMOD) are the total
number of samples found for this module out of the overall TOTAL SAMPLES.

The percentage values provided per CSECT (for example, 62.09% for CSECT IGZCXDI) are the number of
samples found for this CSECT out of the overall SAMPLES found for only the particular module where this
CSECT is contained (MODULE=IGZCPAC in this case).

Note that it is normal and expected to see CSECT names starting with the RI prefix (such as RICHK in this
example) in the profiling report. These RI* CSECTs are part of the RTI program modules bound into the
modules using RTIBIND and they are used to manage the profiling and report collection. The samples
attributed to these RI* CSECTs will be very low as the profiling overhead using the RTI profiler is
negligible.

Sampling tables section
This next section provides a detailed per CSECT breakdown that shows the samples attributed to the
CSECT offsets.

A samples count is shown for an offset if at least one sample was attributed to this offset. The offsets are
sorted in increasing order and match those found in the compiler or optimizer listing file.

For example:

**
* Sampling tables *
**
MODULE=IGZCPAC , EXTENT=X'0001', #SAMPLES=0000000000000430
CSECT=IGZCXDI, #SAMPLES=0000000000000267
TABLE=X'26D970B0'
SIZE=X'00000048', ALIGN=X'00000002', #ENTRIES=0000000082
 Offset | Number Of Samples |
 X'00000000' | 25 |
 X'00000028' | 10 |
 X'0000002C' | 3 |
 X'0000002E' | 12 |
 X'00000032' | 38 |
 X'00000040' | 8 |
 X'00000048' | 32 |
...
MODULE=COBMOD , EXTENT=X'0001', #SAMPLES=0000000000011946
CSECT=COBMAIN, #SAMPLES=0000000000010234
TABLE=X'26EB51A0'
SIZE=X'00000077', ALIGN=X'00000002', #ENTRIES=0000000006
 Offset | Number Of Samples |
 X'000004E2' | 1 |
 X'000004EC' | 1 |
 X'000004F8' | 2 |
 X'00000506' | 121 |
 X'0000050C' | 411 |
 X'0000051A' | 234 |
 X'0000051E' | 34 |
...

Report totals section
At the bottom of the RTI report, the sum totals for the internal state used to store and process the RTI
data are displayed.

This portion of the output does not normally need to be examined and is used for IBM diagnostic
purposes only. For example:

List=0000004192 bytes, ListEntry=0000032053 bytes
SamplingTable=0001101276 bytes, SamplingEntry=0000028080 bytes
#ListEntries=0000000517, #SamplingEntries=0000001404
RIBuffers=0004194304 bytes

Appendix D. Run Time Instrumentation report 97

98 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Appendix E. Manual RTI rebinding instructions

It is recommended to use the RTIBIND option in order to enable modules for RTI Profiling. However, if
more low-level control of the rebinding process is required then the manual steps below can be used
instead.

The RTI Profiler consists of the two members BOZBXITA and BOZRIDT included in the same dataset
where ABO was installed.

• BOZBXITA: links CEEBXITA and the related profiling routines to the main program of the application.
This step enables the starting and stopping of the profiling as well as the monitoring and managing of
the buffers for the RTI Profiler during the program execution.

• BOZRIDT: processes the RTI Profiler buffer data and generates the text file report.

To use the RTI Profiler, follow these steps:

1. In the link-edit step, rebind your existing program to include BOZBXITA
2. In the execution step, specify the location of the dataset that will hold the profiling results

In the steps and JCL examples below, hlqboz.BOZ210.SBOZMOD1 is the installation location chosen for
ABO.

Step 1. Rebind your existing program to include BOZBXITA

The first step is to rebind your existing program to include BOZBXITA so the RTI Profiler is enabled when
running your program.

To perform this rebind, modify the link-edit step of the program containing the main entry point to your
application:

• Add hlqboz.BOZ210.SBOZMOD1 to the link-edit step as SYSLIB
• Include BOZBXITA as additional input to link-edit step

Below is a JCL example for this step:

//LKED EXEC PGM=IEWL,PARM=’options’ <- original link options
//SYSLIB DD DISP=SHR,DSN=hlqboz.BOZ210.SBOZMOD1 <-- add hlqcee.BOZ210.SBOZMOD1 as SYSLIB
// DD DSN=hlqcee.SCEELKED,DISP=SHR
// DD DSN=hlqcee.SCEELKEX,DISP=SHR
//LOAD DD DISP=SHR,DSN=&LOAD
//SYSLMOD DD DISP=SHR,DSN=&SYSLMOD(pgmname)
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *
INCLUDE LOAD(pgmname)
INCLUDE SYSLIB(BOZBXITA) <-- add INCLUDE for BOZBXITA
ENTRY pgmname
NAME pgmname(R)

For step 1, the same set of the link options as the original module must be used when rebinding for RTI
Profiler usage. To verify the same set of the link options were used, you can use AMBLIST on the original
and rebound modules. The most likely mismatch for COBOL programs is inadvertently changing AMODE
from 24 to 31 when rebinding. Below is a JCL example that shows how to set the link options for
AMODE=24.

//LKED EXEC PGM=IEWL,PARM='LIST,MAP,AMODE=24'

Step 2. Specify the location of the dataset that will hold the profiling results

See Capturing profiling results during program Execution.

© Copyright IBM Corp. 2015, 2021 99

100 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

 IBM Corporation
 J74/G4
 555 Bailey Avenue
 San Jose, CA 95141-1099
 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

 Intellectual Property Licensing
 Legal and Intellectual Property Law
 IBM Japan, Ltd.
 3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
 THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
 EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information”.

© Copyright IBM Corp. 2015, 2021 101

http://www.ibm.com/legal/copytrade.shtml

102 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

List of resources

IBM Automatic Binary Optimizer for z/OS publications
You can find the latest and most complete information about the IBM Automatic Optimizer for z/OS
APARs and PTFs on the fix list and new features page.

You can find the following publications in the IBM Automatic Binary Optimizer for z/OS library:

• User's Guide, SC27-9587-00
• Program Directory, GI13-4513-04

Related publications

z/OS publications
You can find the following publications in the z/OS Internet Library.

• Initialization and Tuning Reference, SA23-1380, contains information about the parmlib member
IEFOPZxx.

• Program Management: Advanced Facilities, SA23-1392, contains information on binder API return
codes and reason codes.

• System Management Facilities (SMF), SA38-0667, contains information about the SMF record 90
subtype 38, which captures the IEFOPZ configuration.

• System Messages, Volume 8, SA38-0675, contains information about the messages.

Enterprise COBOL for z/OS publications
You can find the following publications in the Enterprise COBOL for z/OS library.

• Customization Guide, SC27-8712, contains information that helps you plan for and customize Enterprise
COBOL under z/OS.

• Language Reference, SC27-8713, contains information about COBOL language and references needed
to write a program for an IBM COBOL compiler.

• Programming Guide, SC27-8714, contains information and examples that help you write, compile, and
debug programs and classes.

• Migration Guide, GC27-8715, contains information that helps you move to the latest version of IBM
Enterprise COBOL.

• Performance Tuning Guide, SC27-9202, identifies key performance benefits and tuning considerations
when using IBM Enterprise COBOL for z/OS.

• Messages and Codes, SC27-4648, helps you understand compiler and preprocessor messages.

Application Delivery Foundation for z/OS publications
You can find the following publication in the IBM Knowledge Center.

• IBM Application Performance Analyzer for z/OS User's Guide, SC27-8403, contains information that
helps identify system constraints and improve application performance.

• IBM Developer for z/OS documentation (online version only), contains information about the Integrated
Development Environment (IDE), designed to increase developer productivity.

• IBM Fault Analyzer for z/OS User's Guide and Reference, SC19-4116, contains information about
analyzing and fixing application and system failures.

© Copyright IBM Corp. 2015, 2021 103

http://www-01.ibm.com/support/docview.wss?uid=swg27047229
http://www-01.ibm.com/support/docview.wss?uid=swg27046990
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www-01.ibm.com/support/docview.wss?uid=swg27036733
https://www.ibm.com/support/knowledgecenter/SS7EY3

104 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

IBM®

Product Number: 5697-AB2

SC27-9587-00

	Contents
	Tables
	Preface
	About this book
	Abbreviated terms
	How to read syntax diagrams

	Summary of changes
	How to send your comments
	Accessibility features for Automatic Binary Optimizer for z/OS

	Chapter 1. Overview
	Benefits
	Using ABO and Enterprise COBOL together

	Chapter 2. System requirements
	Supported operating systems
	Target hardware levels

	Chapter 3. COBOL module requirements
	Supported program modules
	Eligible compilers
	COBOL language feature and compiler option support
	Handling ineligible CSECTs

	Chapter 4. Installing and verifying installation
	Installing IBM Automatic Binary Optimizer for z/OS
	Verifying installation using the Installation Verification Program (IVP)

	Chapter 5. Optimizing modules
	Required DD statements
	Optimizer directives
	BOPT
	IEFOPZ

	Optimizer options
	ALLOW
	ARCH
	CSECT
	LIST
	LOG
	REPLACE
	RTIBIND and the IBM Run Time Instrumentation Profiler
	SCAN

	Comments
	Line continuation
	JCL examples
	Specifying optimization with BOPT
	Specifying optimization with IEFOPZ

	Recommended settings for the z/OS JCL REGION and JCL MEMLIMIT parameters
	Specifying the language to be used for ABO messages
	Invoking ABO from TSO, REXX and assembler code
	Optimizing under TSO
	Starting the optimizer from an assembler program

	Chapter 6. Understanding output from the optimization process
	Log files
	Listing transform
	Listing transform contents
	SYSPRINT DD and LIST option

	Chapter 7. Using the ABO Assistant
	Components of the ABO Assistant
	How to use the ABO Assistant
	How to use the SMF Analyzer
	How to use the Program Analyzer and Optimizer

	Example reports
	Example report from the SMF Analyzer
	Example report from the Program Analyzer and Optimizer

	BOZPAJ parameter error messages
	Limitations and requirements on Program Analyzer and Optimizer
	SMF DUMP generation

	Chapter 8. Managing optimization and optimized module deployment process
	Optimization and deployment usage scenarios
	Scenario 1: Optimization process with static deployment
	Scenario 2: Optimization process with dynamic deployment
	Scenario 3: Optimization process using a hybrid approach

	Testing information

	Chapter 9. Resolving problems with optimization and optimized module deployment
	Resolving problems that occur during optimization time
	Resolving problems encountered during execution
	Changes in COBOL module size after optimization
	Error message and abend code differences
	Application Delivery Foundation for z/OS

	Appendix A. JCL sample
	Appendix B. Return codes
	Appendix C. Messages
	Appendix D. Run Time Instrumentation report
	Appendix E. Manual RTI rebinding instructions
	Notices
	Trademarks

	List of resources
	IBM Automatic Binary Optimizer for z/OS publications
	Related publications

